Spatial Data Analysis in R

Misc. Concepts 2: Space Use

Eco 697DR – University of Massachusetts, Amherst – Spring 2022 Michael France Nelson

For Today

- Chapter 8: definitions
 - We'll look at some examples on Wednesda
- In-class random walk activity
- Lab: work on lab 6 and individual final projects

Course Wiki

Only a few days left to add to the wiki

- Make sure you add an entry to the course Wiki!
- It's very easy and it's worth 7% of your course grade!

Chapter 8 Code

Updated and verified chapter 8 code is posted to Moodle.

A few warnings about the code:

- The book uses ggplot figures, but the code demos use base plotting.
 - Your plots won't look nearly as pretty.
- I wasn't able to re-create the exact focal type maps from section 8.3.3 for forest type
- There is no file called "landcover reclass.txt"
 - The filename is actually "resistance reclass.txt", but... I'm not sure if this contains the exact text that the resistance reclass.txt file was meant to.

Habitats

Habitat Definitions

Species	Ecosystem
 Niche-like definition Environmental attributes/resources required for a particular species 	 Similar biotic community Vegetation cover type "Ecoregions are areas where ecosystems (and the type, quality, and quantity of environmental resources) are generally similar. This ecoregion framework is derived from Omernik (1987)"

Habitat and Resources

- Habitat refers to biotic and abiotic environment
 - Doesn't explicitly include mates, or items that are consumed.
- **Resource** also includes mates and food

Ideal Free Distribution

- Two (multi) patch model.
- Patches differ in their resource richness.
- Organisms attempt to maximize their resource utilization by selecting which patch to use.
- Organisms are free to select a patch
 - They prefer the richer sites
- Resource availability per organism depends on:
 - 1. Amount of resource in the patch
 - 2. Number of browser/scramble competitors in the patch

Ideal Free Distribution

F+F Figure 8.1

How to interpret these diagrams?

 Organisms move to H1 until per capita resource availability is equal to H2, then they start populating H2

Ideal free distribution

Population size

Ideal Free Distribution

Assumptions

- · Equal competitors
- Fitness of individuals declines with increasing density

Predictions

- At equilibrium, all individuals have similar fitness
- Underlying habitat quality correlates with number of individuals

Ideal despotic distribution

Assumptions

- Unequal competitors
- Fitness of individuals declines with increasing density

Predictions

- At equilibrium, individuals have different fitness
- Densities in poor v rich will depend on competition intensity

Allee Effects

By Uscitizenjason at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=65949730 It's all about density-dependent fitness

- At high population densities, resources becomes limited and individual fitness decreases.
 - Populations may reach an equilibrium level (K)
- Individual fitness is often highest at moderate population densities.

What happens to individual fitness at low population density?

• Individual fitness may decrease. Possibly due to difficulty finding mates, need for cooperation, etc.

Home Ranges and Territories

Home Range	Territory
 Area used by individuals, not necessarily actively defended. Usually larger than a territory May change seasonally or over the course of an organism's life. 	 Area actively defended by an organism. May include prime feeding resources, mating area, etc. Usually smaller than the home range. May be defended from individuals of same or different species Usually smaller than a home range

Utilization Distribution

- Frequency distribution of space used by an animal.
- From F+F Figure 8.9:

Movement

Movement Null Models

Diffusion	Random Walks
	 Discrete time: time steps
	 Space may be continuous or discrete
Continuous time	 Focus on individuals: Lagrangian
Continuous space	 Describes rules for how an animal may
 Focus is on population: Eulerian Describes the probability of finding an 	move, possibly influenced by previous states or positions.
organism at position (x, y).	 Simulations
Differential Equations	 Brownian Motion: occurs when time steps are decreased to zero, i.e. the random walk becomes continuous

A Framework for Movement

4-component framework from Nathan et al. 2008:

- Intrinsic state of individual
- Motion capacity
- Navigation capacity
- External environment

Random Walks

Doing the Mersenne Twist!

What's a Random Walk?

It's a rule-based movement model, usually with discrete time steps, that describes what happens when an object chooses movement distances and/or directions randomly.

- A random walk is a realization of a stochastic process
- A random walk is usually memoryless, but can be modified to remember previous steps, for example direction of the previous time step.
- Various constraints and modifications are possible:
 - Direction: grid or continuous angles
 - Step length: constant, uniform or normally distributed, exponentially distributed

What's a Random Walk?

A random walk can be considered a basic type of **agent-based model**

- A random walk embodies the 4-component framework from Nathan et al. 2008:
- 1. Intrinsic State: current position, direction
- 2. Motion capacity: possible step lengths
- 3. Navigation capacity: range of possible direction changes
- 4. External environment: usually not considered in basic random walks, but preferences for movement toward resources or favorable habitat can be incorporated.

Describing Home Ranges

- Convex Hulls: minimum convex polygons
- Kernel density
- Brownian bridge
- Local convex hulls

Convex Hulls

- The smallest convex polygon that completely encloses a set of points. What does convex mean?
- Every angle in the polygon is less than 180 degrees, i.e. no concave angles.
- Percentile minimum convex polygons:
- Hull contains n% of points in collection
- Implemented in adhabitatHR::mcp()
 Binary utilization distribution
- From F + F figure 8.8:

Minimum Convex Hulls: Panther # 100

```
pan_{100} = subset(panthers, CatID == 100)
plot(pan_100)
plot(
  mcp(pan_{100}, percent = 95),
  add = T,
  col = adjustcolor("blue", 0.1))
plot(
  mcp(pan_{100}, percent = 85),
  add = T.
  col = adjustcolor("blue", 0.1))
plot(
  mcp(pan_{100}, percent = 50),
  add = T,
  col = adjustcolor("blue", 0.1))
```


Concave Hull

- Related to convex hulls, but allows for concavity.
- Concavity controlled by a parameter.
- Implemented in package `concaveman` in R.
- Binary utilization distribution
 - Area is either home range or not, no probability/uncertainty

Concave Hull

G. Ο 000 00 Ο 80 ο ወ 8 d-p ဝရှိ

Concavity = 1

Kernel Density

- Assumes that there is some probability From Fig. 8.4 in F+F of utilization in area surrounding known points.
- Kernel refers to the smoothed probability of occurrence surrounding point.
 - Often uses a bivariate normal, others are possible
 - High probability at point, decreases with distance.
- Overlays the kernel over all the known points and applies a smoothing altorithm

Kernel Density

- Like a 2-D smoothing of a histogram:
 - Height of density comes out of the page along the z-axis.
 - Regions with lots of points have high zvalue
 - Sparse regions have low z-values
- Amount of smoothing: Bandwidth
 - You can use a default smoothing bandwidth.
 - You may use an 'adaptive' bandwidth which takes into account the number of points in the neighborhood.

Kernel Density

- Unlike a hull-based approach, KDE gives a continuous estimate of the resource utilization distribution.
- From figure 8.9 in F+F

Brownian Motion

- Describes the random motion of a particle suspended in a fluid.
- Motion is a result of random collisions with other particles in the fluid
- Observed by botanist Robert Brown in 1827, contributed his name to the phenomenon. More fully described in a paper by Einstein in 1905.

https://publicdomainreview.org/collection/pollen-up-close-1837

The Brownian Bridge Model

- Describes the probabilistic path of an animal given a set of ordered, known locations in space.
- Between two known points, builds a probability surface of the possible Brownian motion paths the animal may have taken.
- Points are considered certain, intermediate paths incorporate uncertainty.
- Brownian motion (random walk) paths that begin and end at the known points.
 - Uncertainty is maximized at midpoints

Brownian Bridge

Brownian Bridge and Random Walks

- Based on properties of random walks, but not actually a simulation method.
- Random walks are simulations, but there's well-developed theory about their average (statistical) properties.
- B.B. uses theory of random walks to populate a probability surface.

Local Convex Hulls

- Related to minimum convex hulls.
- Creates a series of 'local' convex hulls using each point as a focus.
 - You decide the number of nearest neighbors to include in the hull
 - Radius-based methods also available
- Overall hull is the union of all the local hulls
- Larger number of nearest neighbors: more like the global convex hull.
- Fewer neighbors: greater concavity

Figure 8.10 in F+F

