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Spatial Data Analysis in R
Misc. Concepts 1: ggplot2, NetCDF, Modeling Species 

Distributions
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Crash Course in ggplot
Just the basics

Spring 2022 ECO 697DR 2



The Grammar of Graphics
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• A logical, layered approach to creating 
graphics.

• The Grammar of Graphics is a 
philosophy.

• Being intentional about graphic 
elements.

• Grammar of graphics is a great fit for 
spatial data.



Grammar of Graphics in R
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• The Grammar of Graphics is a 
philosophy.

• It is implemented in R with the ggplot2
package.



Grammar of Graphics in R
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1 •Data

2 •Aesthetics

3 •Geometry



ggplot: Data (Frames) In Row Format

Data in row-format is key to success 
with ggplot!
But… what is the row data paradigm?

The row data paradigm:
• Rows are observations, or features.
• Columns are attributes, i.e. variables.
• This sounds a lot like an attribute table 

in Arc GIS…
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Simple Data Example: Cars

• Rows = Observations
• Columns = Variables
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Variables

Observations



ggplot: Aesthetics

• In ggplot, aesthetics specify how 
variables are mapped to components 
of a plot.  For example:

• X- and Y- values
• Groups
• Color and fill

• Aesthetics are specified with the aes() 
function.
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Cars Scatterplot: X- and Y- Aesthetics
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X

Y



ggplot: Geometries
Geometries specify the type of plot.  For example:

• Scatterplots

• Boxplots

• Histograms

There are tons of different geometries, each one recognizes a different set of 
one or more aesthetics.
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Example Scatterplot: Penguins Data
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The Palmer penguins 
dataset contains lots of 
variables, we’ll concentrate 
on:
• Species
• Sex
• Bill Length
• Body Mass



Scatterplot 1: Body Mass and Bill Length
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1: Data
• Penguins

2: Aesthetics
• X: Body Mass
• Y: Bill Length

3: Geometry
• Points (scatterplot)



Scatterplot 1: Body Mass and Bill Length

Spring 2022 ECO 697DR 13

1: Data
• Penguins

2: Aesthetics
• X: Body Mass
• Y: Bill Length

3: Geometry
• Points (scatterplot)



Now Let’s Add A Colour Aesthetic!
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• That was cool!

• Let’s add some 
color



Scatterplot 2: Body Mass, Bill Length, Species
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1: Data
• Penguins

2: Aesthetics
• X: Body Mass
• Y: Bill Length
• Color: Species

3: Geometry
• Points (scatterplot)



Scatterplot 2: Body Mass, Bill Length, Species
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1: Data
• Penguins

2: Aesthetics
• X: Body Mass
• Y: Bill Length
• Color: Species

3: Geometry
• Points (scatterplot)



Shape Aesthetic
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• Great!

• Now let’s try some 
different shapes



Scatterplot 3: Body Mass, Bill Length, Species
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1: Data
• Penguins

2: Aesthetics
• X: Body Mass
• Y: Bill Length
• Color: Species
• Shape: Sex

3: Geometry
• Points (scatterplot)



Scatterplot 3: Body Mass, Bill Length, Species
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1: Data
• Penguins

2: Aesthetics
• X: Body Mass
• Y: Bill Length
• Color: Species
• Shape: Sex

3: Geometry
• Points (scatterplot)



Recap: Basic Grammar of Graphics in R
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1 •Data

2 •Aesthetics

3 •Geometry



Plotting Simple Features With 
ggplot

Let’s make some maps!
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Grammar of Graphics With Spatial Data
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1 •Data

2 •Aesthetics

3 •Geometry

4 •Coordinate sys.

We can follow the familiar ggplot
procedure with an additional step:
• Specify a coordinate system



Map 1: State Borders
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1: Data
• CONUS

2: Aesthetics
• None

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• GCS: NAD83



Map 1: State Borders
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1: Data
• CONUS

2: Aesthetics
• None

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• GCS: NAD83



Map 1: State Borders
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• Not terrible, but pretty 
basic… and in an ugly 
CRS.

• Let’s elaborate by 
changing coordinate 
systems.  We can use an 
Albers Equal Area Conic 
centered on CONUS: 
EPSG 5070



Map 2: State Borders
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1: Data
• CONUS

2: Aesthetics
• None

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• PCS: Equal Area



Map 2: State Borders
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1: Data
• CONUS

2: Aesthetics
• None

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• PCS: Equal Area



Map 2: State Borders
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What should we do next?

Recall the data attributes:
• State Name
• Region
• Population

Let’s color the borders by 
region



Map 3: Regions 1
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1: Data
• CONUS

2: Aesthetics
• Color: Region

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• PCS: Equal Area



Map 3: Regions 1
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1: Data
• CONUS

2: Aesthetics
• Color: Region

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• PCS: Equal Area



Color and Fill

• Let’s be a fancy and change the fill 
color by region too.

• We can make the fill semitransparent 
by adjusting the alpha parameter
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Map 4: Regions 2
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1: Data
• CONUS

2: Aesthetics
• Color: Region
• Fill: Region

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• PCS: Equal Area



Map 4: Regions 2
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1: Data
• CONUS

2: Aesthetics
• Color: Region
• Fill: Region

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• PCS: Equal Area



• Let’s make a choropleth from 
population.

• Which aesthetic do we need to use?

What About Data?
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•That’s cool, but how can we use R’s data manipulation 
potential?



Map 5a: Choropleth 1
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1: Data
• CONUS

2: Aesthetics
• Fill: Population (blue 

color scale)

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• PCS: Equal Area



Map 5a: Choropleth 1
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1: Data
• CONUS

2: Aesthetics
• Fill: Population (blue 

color scale)

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• PCS: Equal Area



Map 5b: Choropleth 1b
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That’s OK, but the color 
scale isn’t the best.

We can use one of the 
viridis scales, which are 
optimized for 
colorblindness and 
grayscale.

Now, let’s symbolize the 
region using the state 
border color…



Map 5b: Choropleth 1b
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That’s OK, but the color 
scale isn’t the best.

We can use one of the 
viridis scales, which are 
optimized for 
colorblindness and 
grayscale.

Now, let’s symbolize the 
region using the state 
border color…



Map 6: Choropleth 2
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1: Data
• CONUS

2: Aesthetics
• Fill: Population

• Viridis scale ‘c’
• Color: Region

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• PCS: Equal Area



Map 6: Choropleth 2
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1: Data
• CONUS

2: Aesthetics
• Fill: Population

• Viridis scale ‘c’
• Color: Region

3: Geometry
• Simple Feature: geom_sf

4: Coordinate System
• PCS: Equal Area



Map 6: Choropleth 2
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What’s the viridict on this 
map?



Niche Concepts
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Niche Concepts
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• Abiotic and biotic factors
• Fundamental niche
• Niche breadth
• Niche conservatism
• Realized niche
• Source, sink habitats

Figure 1 in Devictor et al, 2010

Definition of Grinnellian vs. Eltonian
specialization. (a) The Grinnellian
specialization of a given species can be 
described by its variance in performance 
across a given range of resources. For a 
given mean performance, the dashed line 
describes the performance of a generalist 
species (generalist, G) and the solid line of 
a more specialist species (specialist, S). (b) 
Eltonian specialization is defined as the 
variance in the species’ impact (instead of 
performance) on the environment. For a 
given mean impact, the species’ impact 
can be distributed through a large part of 
the environment (G) or be more restricted 
(S).



Eltonian

Eltonialn and Grinnellian Niches

• “scenopoetic”
• Response of species to abiotic factors 

and biotic resources
• Water, food, favorable temperatures, etc.

• “…hypervolume in multidimensional 
space...”

• “bionomic”
• Biotic interactions allow persistence

• Competition, predator/prey interactions, 
etc.

• Focus on species interactions and 
impacts
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Grinnellian + Hutchinsonian



Data for Species Distribution 
Models
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Presence, Absence, and Abundance

• Presence: Species was detected at the site
• Absence: Failed to detect species at the site

• Can be a true absence or pseudoabsence
• Detection

• Abundance: X individuals of the specie were observed at the site.
• Contains more information than presence/absence
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Pesudoabsences

Absences

• Observations of absences, as part of a 
planned experiment.

• Subject to detection errors

• Background points
• Randomly generated

• CSR
• Grid-based/stratified methods
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True Absences



Species Distribution Modeling 
Paradigms

Spring 2022 ECO 697DR 48



What is a Species Distribution Model?

• “The principle of SDM is to relate known locations of a species with the 
environmental characteristics of these locations in order to estimate the 
response function and contribution of environmental variables [12], and 
predict the potential geographical range of a species [13]. These 
models estimate the fundamental ecological niche in the environmental 
space (i.e. species response to abiotic environmental factors [14]) and 
project it onto the geographical space to derive the probability of 
presence for any given area or, depending on the method, the likelihood 
that specific environmental conditions are suitable for the target 
species [15].”

• From Forcade et al., 2014: Mapping Species Distributions with MAXENT Using a Geographically Biased Sample of Presence Data: A Performance 
Assessment of Methods for Correcting Sampling Bias

Spring 2022 ECO 697DR 49

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097122#pone.0097122-Austin1
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097122#pone.0097122-Elith1
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097122#pone.0097122-Sobern1
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097122#pone.0097122-Elith2


Phenomenological

Mechanistic and Phenomenological Models

• Attempts to describe species 
distribution based on:

• Physiological tolerances
• Resource availability

• Tries to explicitly model resource use 
and interactions

• Generally more difficult

• Uses characteristics of locations where 
species is present (or absent).

• Does not attempt to explain ‘why’.
• Most species distribution models are 

phenomenological
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Mechanistic



Mechanistic Model Example: Mountain Pine Beetles

• Model updates physiological state of overwintering larval beetles based 
on daily temperature minima and maxima: 1 – summer state, 2 –
fall/spring state, 3 – deep winter state.
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Physiological Model Example
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• We used Regniere + Bentz model to 
create spatial estimates of 
overwinter MPB survival for specific 
winters.

• Multi-winter average survivals used 
to model pine tree death



Physiological Model Example
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Note the 
inter-year 
differences



Physiological Model Example
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We used mean multi-year survival as a proxy for 
beetle population



Envelope Approaches

• Profile methods
• Generally constructed from presence-only data
• Not generally mechanistic, but could be informed by physiological limits 

on temperature, water availability etc.
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Envelope Example: Ungulate Species

• NOTE: this research is in progress, results are not final.
• Approach:

• Field surveys of herd locations of 2 species
• Constructed concave hull around herd locations
• Calculated density curve for observed locations for variables:

• Elevation, aspect, slope, roughness
• Distance to human disturbance

• Calculated 95% null envelope for randomly selected background points
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Elevation
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Elevation
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• Both species occur at mid-
elevations, Ibex has more 
restricted range of elevations



Slope
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Slope

• Urial ‘prefers’ lower 
slopes

• Ibex distributes itself 
randomly with respect to 
slope.
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Aspect



Aspect

• Ibex appears randomly 
distributed

• Urial seems to slightly 
prefer NE slopes

• Neither animal strays 
very far from random
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Terrain Roughness

Spring 2022 ECO 697DR 63



Terrain Roughness

• Ibex is more of a 
generalist

• Urial prefers less 
rough terrain
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Distance to Disturbance

• Urial prefers closer 
distances
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Normalized Difference Vegetation Index
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• Not surprising, both 
animals concentrate on 
areas with high NDVI!

• Ndvi measures plant 
health (approximately)

• Higher NDVI = More 
abundant food
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Statistical and Machine Learning 
Methods
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Statistical and Machine Learning Methods

“The statistical approach focuses on questions such as what 
model will be postulated (e.g. are the effects additive, or are 
there interactions?), how the response is distributed, and 
whether observations are independent. By contrast, the ML 
approach assumes that the data-generating process (in the case 
of ecology, nature) is complex and unknown, and tries to learn 
the response by observing inputs and responses and finding 
dominant patterns. This places the emphasis on a model's ability 
to predict well, and focuses on what is being predicted and how 
prediction success should be measured.”

• From Elith et al. 2008, A working guide to boosted regression trees.
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Machine Learning

Statistical and Machine Learning Methods

• May be mechanistic or 
phenomenological.

• We like to think our modeling is based 
on our expert understanding (or 
informed hypotheses) of the system, 
and therefore mechanistic:

• We think that thrushes will prefer mesic 
forest because of more abundant food 
sources, for example. 

• Phenomenological: learning patterns 
from the data

• Does not require previous 
understanding of the system

• Nonlinearity? Dependence? Who 
cares?
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Statistical



Maximum Entropy Principle

What is the Maximum Entropy principle?  Per Wikipedia:  
• “…Another way of stating this: Take precisely stated prior data or 

testable information about a probability distribution function. 
Consider the set of all trial probability distributions that would 
encode the prior data. According to this principle, the distribution 
with maximal information entropy is the best choice.

• Since the distribution with the maximum entropy is the one that 
makes the fewest assumptions about the true distribution of data, 
the principle of maximum entropy can be seen as an application 
of Occam's razor.
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https://en.wikipedia.org/wiki/Information_entropy
https://en.wikipedia.org/wiki/Occam%27s_razor


Information Entropy

That was a lot to take in all at once.  Let’s start with something simpler: 
Information entropy.

Informally, information entropy is the potential amount of information 
that can be conveyed by a set of characters.  It is related to uncertainty:
• High information entropy: an alphabet of A, B, and C, each with 

probability 1/3.
• Low information entropy: an alphabet of A, B, and C with probabilities 

98/100, 1/100, and 1/100.
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Shannon Entropy/Diversity
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• Measures diversity and evenness
• Maximized when:

• There are lots of letters, each letter 
in the bucket occurs with equal 
frequency

• There are many species, each with 
equal abundance

• In a certain sense, maximum 
entropy/diversity is equivalent to 
maximum uncertainty. 

• Pi shrinks more quickly than ln(pi)



Modeling Species Distributions With Maxent

• Maxent was designed for presence-only data
• In R:

• maxent package: easy to implement, but requires rJava which can be moody.
• maxnet package: also easy and doesn’t require Java
• Examples of both in F+F
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Forest

Trees and Forests

Individual tree is like a dichotomous key.
• Recursive binary splits: sequential set 

of questions (branches) that arrives at 
a classification.

Trees and forests are kinds of Machine 
Learning algorithms
Output is usually binary

Set of many trees
Data is fed to all the trees, an average 
(or consensus) taken from the results of 
all the trees.
Output is continuous.
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Decision Trees



Regression Approaches

• All the standard regression paradigms we know about can be used for 
SDMs:

• General linear models (usually too simple)
• Generalized linear models: can accommodate different response types, 

certain kinds of nonlinearity, different error distributions
• Additive models: good for phenomenological modeling of nonlinear 

relationships
• Hierarchical models: helpful for data with complicated structures
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NetCDF Files
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Common Data Format

The Common Data Format is a format that aims to:
• Combine data and metadata

• Can store information on projections, etc.
• Attempts to enforce meaningful naming conventions

• Provide efficient storage for array-based data.
• What’s an array? A regular, rectangular, grid of data
• Can store multidimensional arrays: 2D and 3D are most common
• Provides functionality for compressing data
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Common Data Format
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https://www.unidata.ucar.edu/software/netcdf/


UNIDATA
•
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https://www.unidata.ucar.edu/about/tour/


Working With NetCDF Files

• It’s pretty easy in R, you’ve already done it!
• Remember lab 0?  You read a ‘grid’ file and save it as a .nc file using the 

writeRaster function.

• R has several packages that work with NetCDF files:
• Raster (and terra): These can read and write NetCDF files.  Do not provide direct 

access to advanced functionality.  It can be a pain to add projection info to a 
raster before writing it.

• ncdf4: Allows you to manipulate the ‘guts’ of a NetCDF file.
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Viewing NetCDF Data

• You can read a NetCDF file into R and plot it.
• It’s easier to use Panoply to visualize nc files.

• Panoply requires Java.  Usually this is not a problem, but sometimes it’s tricky to 
set up Java on your computer.

• Let’s look at an example file!
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