Spatial Data Analysis in R Dealing With Spatial Dependence 3 Examples

Eco 697DR – University of Massachusetts, Amherst – Spring 2022 Michael France Nelson

Packages and Data

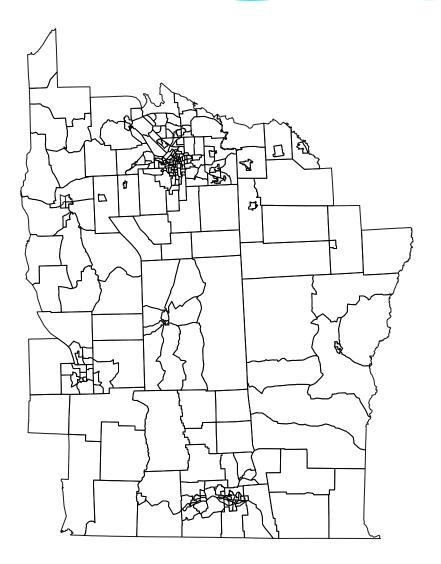
You'll need the following spatial packages to recreate the analyses in this deck:

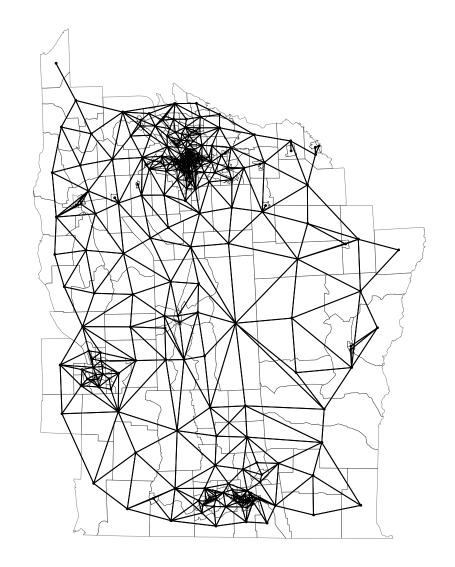
- spdep, spatialreg
- rgdal, sf, sp

Leukemia Incidence

- Areal data: New York congressional district 8 (includes Syracuse).
- Responses:
 - Leukemia counts (Cases)
 - Leukemia incidence rate, Log-transformed (Z)
- Predictors:
 - Pct age 65 or more (PCTAGE65P)
 - TCE (pollution) exposure (PEXPOSURE)
 - Pct homeownership (PCTOWNHOME)
- Example inspired by Bivand et al. 2008 Chapter 9

New York Congressional District 8





New York Congressional District 8

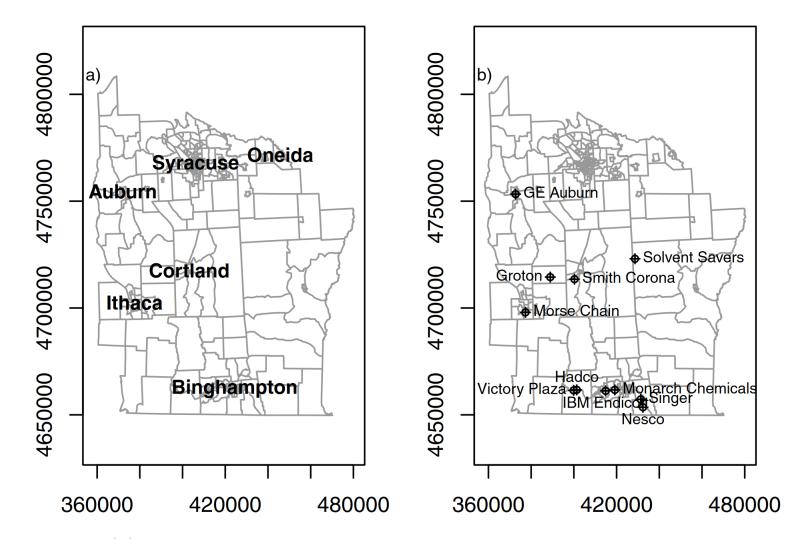


Fig. 9.1 (a) Major cities in the eight-county upper New York State study area; (b) locations of 11 inactive hazardous waste sites in the study area

We'll Focus on Syracuse

We need to:

- Subset to Syracuse
- Create neighborhood object
- Create neighborhood weights

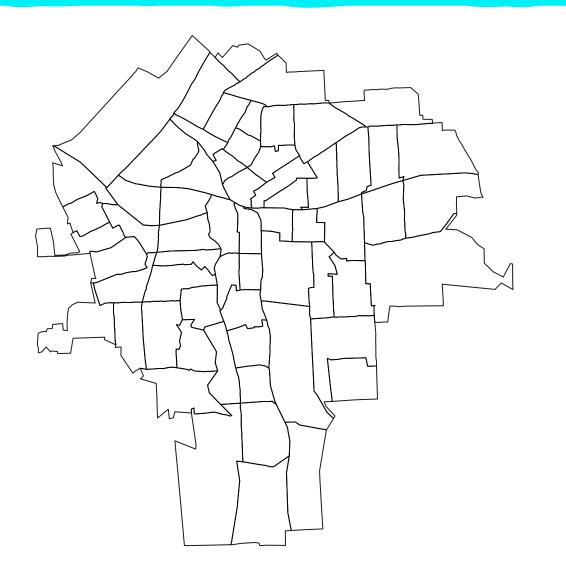
```
sy_sp = subset(ny_8, AREANAME == "Syracuse city")
sy_nb = poly2nb(sy_sp, queen = TRUE)
sy_nb_w = nb2listw(sy_nb)
```

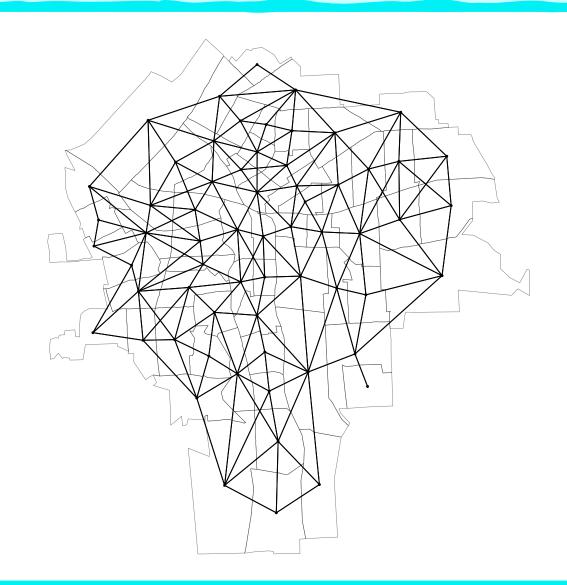
ny_8 is a SPolygonsDF

Plot the Census Tracts and Neighborhoods

Plot the tract borders	Overplot the neighborhood network
<pre>par(mar = c(0, 0, 0, 0)) plot(sy_sp, border = gray(0, 0.9), lwd = 1)</pre>	<pre>par(mar = c(0, 0, 0, 0)) plot(sy_sp, border = gray(0, 0.5), lwd = 0.3) plot(sy_nb_w, coords = coordinates(sy_sp), add = T, pch = 16, cex = 0.4) dev.off()</pre>

Plot the Census Tracts and Neighborhoods





ECO 697DR

Examine Autocorrelation in the Variables

- Count of leukemia cases in the census tracts:
 - Data are not integers!
 - "... because some cases could not be placed, they were added proportionally to other block groups, leading to non-integer counts."

moran.test(sy_sp\$Cases, listw = sy_nb_w)

For Areal data, the function expects:

- 1. A vector of numbers
- 2. A neighbor weight object

Cases Per Tract

Moran I test under randomisation

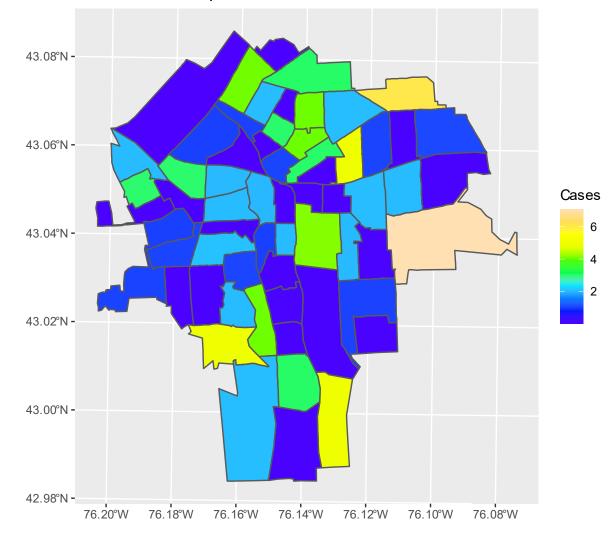
data: sy_sp\$Cases
weights: sy nb w

Moran I statistic standard deviate = -1.0531, p-value = 0.8538
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
-0.095343683 -0.016129032 0.005658514

Cases Choropleth

sy_sf = st_as_sf(sy_sp)
ggplot(sy_sf) +
 geom_sf(aes(fill = Cases))+
 ggtitle("Leukemia Cases per Census Tract")

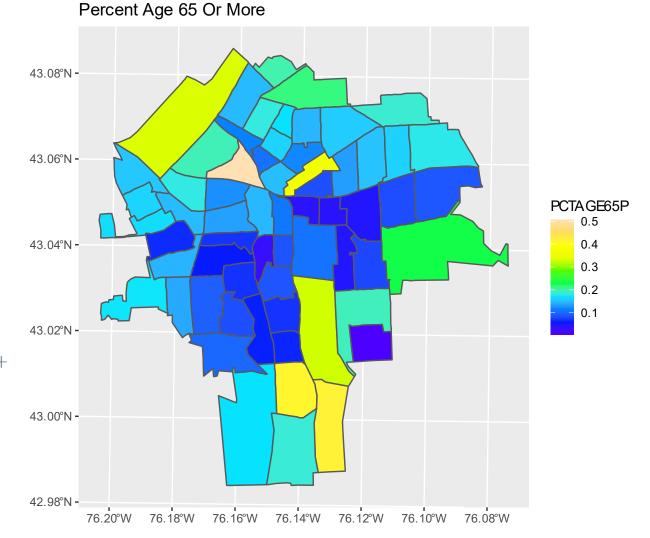
Leukemia Cases per Census Tract



Percent Age 65+

 Let's check for autocorrelation in the percentage of residents aged 65 or more:

```
ggplot(sy_sf) +
geom_sf(aes(fill = PCTAGE65P))+
ggtitle("Percent Age 65 Or More") +
scale_fill_gradientn(
colours = topo.colors(10))
```



Percent Age 65+: Moran Test

moran.test(sy_sp\$PCTAGE65P, listw = sy_nb_w)

Moran I test under randomisation

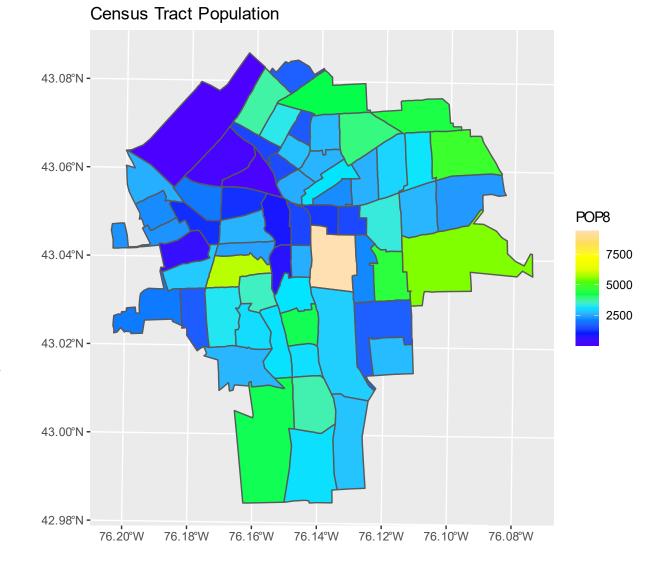
```
data: sy_sp$PCTAGE65P
weights: sy_nb_w
```

Moran I statistic standard deviate = 2.7341, p-value = 0.00312 alternative hypothesis: greater sample estimates: Moran I statistic Expectation Variance 0.184687352 -0.016129032 0.005394923

Population

• Let's check for autocorrelation in the tract population:

```
ggplot(sy_sf) +
geom_sf(aes(fill = POP8))+
ggtitle("Census Tract Population") +
scale_fill_gradientn(
colours = topo.colors(10))
```



Percent Age 65+: Moran Test

```
moran.test(sy_sp$POP8, listw = sy_nb_w)
```

Moran I test under randomisation

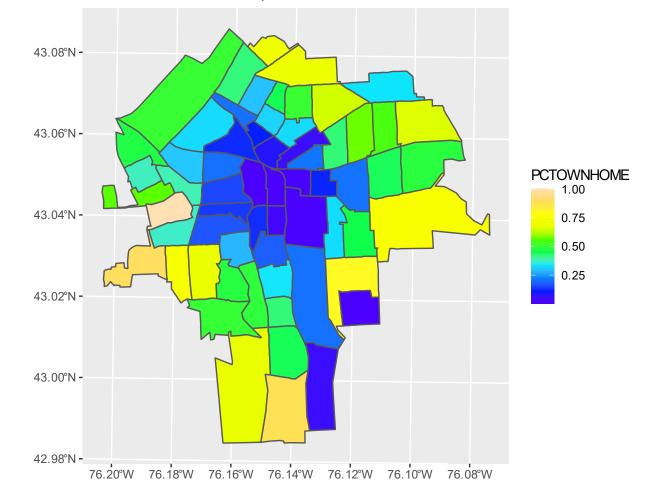
```
data: sy_sp$POP8
weights: sy nb w
```

Moran I statistic standard deviate = 2.2158, p-value = 0.01335
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.14361881 -0.01612903 0.00519757

Home Ownership

- Do you think there's autocorrelation?
- What do you notice about the city center?

Percent Homeownership



Fit an Aspatial Model

Fit a model using two of the predictors:

- Percent age 65+
- Percent home ownership

fit_aspatial_1 = lm($Z \sim PCTAGE65P + PCTOWNHOME$, data = sy_sf)

• Examine model summary

Model Summary

```
Call:
lm(formula = Z ~ PCTAGE65P + PCTOWNHOME, data = sy sf)
Residuals:
   Min 1Q Median 3Q Max
-1.8679 -0.5718 -0.2572 0.4032 3.9231
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4938 0.2732 -1.807 0.07574.
PCTAGE65P 4.2242 1.2354 3.419 0.00113 **
PCTOWNHOME -0.2536 0.4744 -0.535 0.59489
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 0.9335 on 60 degrees of freedom
Multiple R-squared: 0.1642, Adjusted R-squared: 0.1363
F-statistic: 5.893 on 2 and 60 DF, p-value: 0.004607
```

Autocorrelation in the Residuals?

```
moran.test(residuals(fit_aspatial_1), listw = sy_nb_w)
```

Moran I test under randomisation

```
data: residuals(fit_aspatial_1)
weights: sy_nb_w
```

Moran I statistic standard deviate = 2.844, p-value = 0.002228
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.190565357 -0.016129032 0.005282012

Spatial Model: Spatial Filter

• Eigenvector filtering: add eigenvector as a model predictor

```
# Calculate most important eigenvector(s)
syr_me = ME(
   Z ~ PCTAGE65P + PCTOWNHOME,
   data = sy_sf, listw = sy_nb_w)
fit_filter_1 = lm(
   Z ~ PCTAGE65P + PCTOWNHOME + fitted(syr_me),
   data = sy_sf)
summary(fit filter 1)
```

Spatial Filter Model Summary

We can interpret this just like a regular linear model summary. Note the eigenvector predictor coefficient.

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-0.4739	0.2538	-1.867	0.06686	
PCTAGE65P	3.8001	1.1547	3.291	0.00169	* *
PCTOWNHOME	-0.1389	0.4420	-0.314	0.75447	
fitted(syr_me)	-2.8447	0.8748	-3.252	0.00190	* *
Signif. codes:	0 ***/	0.001 `**'	0.01 `*'	′ 0.05 `.′	0.1 1
Residual standard error: 0.8669 on 59 degrees of freedom					

Residual standard error: 0.8669 on 59 degrees of freedom Multiple R-squared: 0.2912, Adjusted R-squared: 0.2552 F-statistic: 8.08 on 3 and 59 DF, p-value: 0.0001354

Autocorrelation in the Residuals?

```
moran.test(residuals(fit_filter_1), listw = sy_nb_w)
```

Moran I test under randomisation

```
data: residuals(fit_filter_1)
weights: sy_nb_w
```

Moran I statistic standard deviate = 1.0184, p-value = 0.1542
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.058416034 -0.016129032 0.005358211

Spatial Model: SAR

Simultaneous Autoregressive Regression: model the variance/covariance matrix

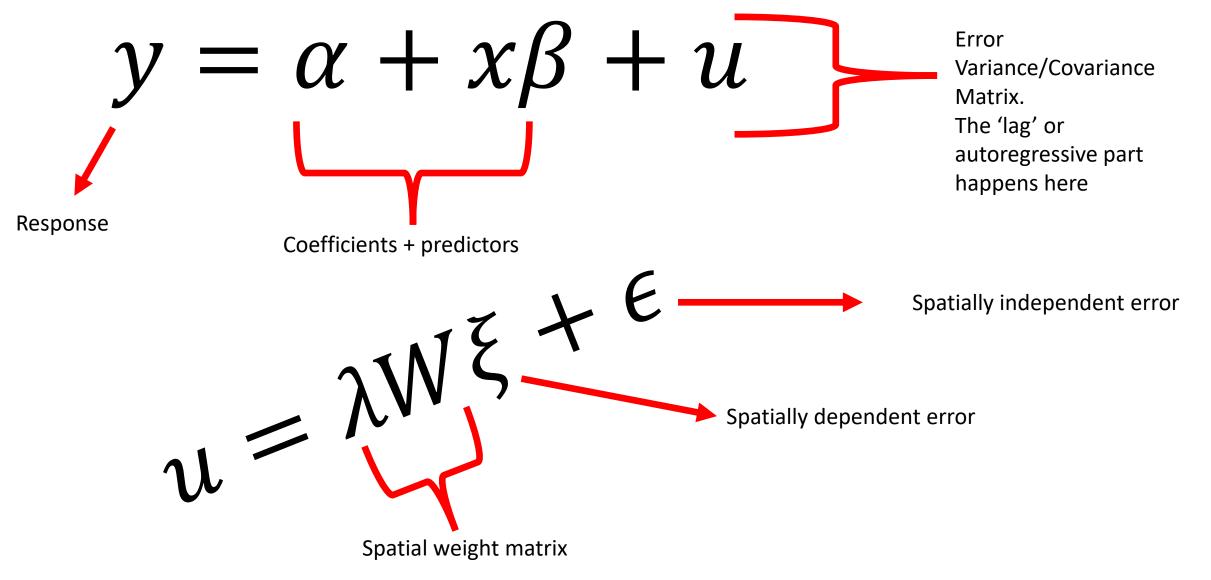
SAR Model Summary

Model summary has a lot of info, we'll concentrate on the sign and significance of the coefficients... Residuals:

... but notice the lambda value.

	Kestadats.
	Min 1Q Median 3Q Max
	-1.59781 -0.46473 -0.24743 0.42949 3.61096
	Coefficients:
ב	Estimate Std. Error z value $Pr(> z)$
-	(Intercept) -0.5826945 0.3094914 -1.8827 0.0597344
	PCTAGE65P 4.1023345 1.1988611 3.4219 0.0006219
	PCTOWNHOME 0.0058742 0.5061358 0.0116 0.9907400
•	Lambda: 0.40776 LR test value: 5.2787 p-value: 0.021587
	Numerical Hessian standard error of lambda: 0.16029
	Log likelihood: -80.88484
	ML residual variance (sigma squared): 0.73717, (sigma: 0.85859)
	Number of observations: 63
	Number of parameters estimated: 5
	AIC: 171.77

Generalized Least Squares: Autoregressive Models



ECO 697DR

Autocorrelation in the Residuals?

```
moran.test(residuals(fit_sar_1), listw = sy_nb_w)
```

Moran I test under randomisation

```
data: residuals(fit_sar_1)
weights: sy_nb_w
```

Moran I statistic standard deviate = 0.074738, p-value = 0.4702
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
-0.010660229 -0.016129032 0.005354309

Spatial Model: Lag

 Lag model adds an 'autocovariate' term: a function of the response and a weight matrix.

Spatial Lag Model Summary

Model summary has a lot of info, we'll concentrate on the sign and significance of the coefficients....

... but notice the rho term

```
Type: lag
Coefficients: (asymptotic standard errors)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.51344 0.25293 -2.0299 0.0423651
PCTAGE65P 3.89572 1.15529 3.3721 0.0007461
PCTOWNHOME -0.14013 0.43802 -0.3199 0.7490286
```

```
Rho: 0.37547, LR test value: 5.1601, p-value: 0.023112
Asymptotic standard error: 0.15455
    z-value: 2.4294, p-value: 0.015125
Wald statistic: 5.9018, p-value: 0.015125
```

```
Log likelihood: -80.94418 for lag model
ML residual variance (sigma squared): 0.74279, (sigma: 0.86185)
Number of observations: 63
Number of parameters estimated: 5
AIC: 171.89, (AIC for lm: 175.05)
LM test for residual autocorrelation
test value: 0.022373, p-value: 0.8811
```

Spatial Lag Models: Autocovariate

 $y_i = \rho WY + \alpha + x_i\beta + e_i$ Response Error (single term) Coefficients + predictors Neighborhood-based

lag component

Autocorrelation in the Residuals?

```
moran.test(residuals(fit_lag_1), listw = sy_nb_w)
```

Moran I test under randomisation

```
data: residuals(fit_lag_1)
weights: sy_nb_w
```

Moran I statistic standard deviate = 0.1613, p-value = 0.4359
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
-0.004356871 -0.016129032 0.005326313

Recap

What did we learn?

- Age 65+ was positive and highly significant in all models.
 - Coefficients were similar, ranging from 3.8 4.2
- Spatial autocorrelation was present in the 65+ variable
- Spatial autocorrelation was present in the aspatial model's residuals
- All three spatially-aware models eliminated the autocorrelation.

Which model would you choose?

Model Comparison

You could use RMSE or AIC

4 Filter 0.839

Next Week

Plan for next week:

- Mini-lecture on weighted regressions
- In-class consultations about final project proposals
 - It's advising season, and I won't be able to schedule outside-of-class meetings.
- Work on labs and main projects in class
- Take a poll for topics to cover in the last few weeks of class!