Spatial Data Analysis in R

Point Patterns and Analysis

Eco 697DR – University of Massachusetts, Amherst – Spring 2022 Michael France Nelson

Assessing Significance

Assessing Significance: Unmarked Point Patterns

- What questions can we ask with univariate point pattern analyses?
- What is our null hypothesis?
- What are the properties of a point pattern under the null?

Assessing Significance: Unmarked Point Patterns

- What questions can we ask with univariate point pattern analyses?
 - Aggregation, dispersion
- What is our null hypothesis?
 - No pattern
- What are the properties of a point pattern under the null?
 - Uniform distribution in space.
 - Quadrat counts follow a Poisson distribution
- How to assess significance?

Significance for aggregation functions

How can we tell if departures from CSR are significant?

Simulations of CSR, or other appropriate point generating process, can generate an *envelope* to use for significance testing.

Stationary/Homogeneous Processes	Sources of Inhomogeneity
 The position of each point does not depend on the positions of other points 	 Gradients
 points are independent 	Covariates
 Points are equally likely to occur 	 Non-constant intensity
anywhere in space	 Non-independent point positions
 the intensity is constant throughout space 	 Parent/offspring processes
 This sounds like Complete Spatial Randomness! (because it is) 	 Whether a point pattern is homogeneous or inhomogeneous can depend on your
 Compare to inhomogeneous patterns. 	choice of scale and/or sampling unit

Point generating processes

CSR: Poisson process

Inhomogeneous Poisson patterns: non-constant intensity

• Cox process: intensity λ varies in space

Offspring point patterns: clustering

- Parent points are CSR.
- Matérn: offspring are CSR within a radius of parent points.
- Thomas: offspring are Normally-distributed about parent

Processes with repulsion: overdispersion

- Inhibition zone
- Hard-core and soft-core processes: minimum core distance

Point Process Examples CSR Pattern

CSR, lambda = 100

CSR, lambda = 10

L-function: CSR

L-Function: CSR

Spring 2022

ECO 697DR

Significance: Simulation

Procedure to create a 95% simulation envelope:

- Simulate a CSR pattern
- Calculate L(r) or g(r) for the simulation, record results
- Repeat steps 1 and 2 n times
- Calculate the upper and lower 2.5% quantiles

Interpreting the envelope

- We know that 95% of simulated CSR values fall within the envelope.
- If the observed L or g (or G, or K) fall within the envelope, they are consistent with CSR.
- If the observed function values are outside the envelope, we can reject the null of CSR

Significance via Simulation

L-Functions of 100 Simulations of CSR

Matern Pattern

Matern: k = 5 scale = 0.05, mu = 5

Matern: k = 5 scale = 0.2, mu = 5

L-function: Matern

L-Function: Matern pattern 1

PCF-function: Matern

PCF: Matern pattern 1

r

Matern Pattern

Matern: k = 5 scale = 0.05, mu = 5

Matern: k = 5 scale = 0.2, mu = 5

L-function: Matern

L-Function: Matern pattern 2

G-function: Matern

PCF: Matern pattern 2

r

A Cool Mistake

Interpolation: Inverse Distance

Inverse Distance Weighting Interpolation

A slight detour into chapter 5 material which will lead to a discussion of marked points.

Interpolation: filling in the gaps for areas in which we have no data.

We'll discuss several techniques in this course

- Inverse Distance Weighting (IDW)
 - A non-statistical method that uses a weight matrix (derived from a distance matrix)
 - Allows for weighting the distance of influence of nearby data points.
- Kriging
 - A statistical technique that also estimates uncertainty

Inverse Distance Weighting

- IDW is a simple, nonstatistical interpolation method.
- It calculates unknown points as a weighted average of nearby points.
- Weight parameter determines how far the influence of each point extends.

weight = 0.5

IDW

Template Raster nrows = 50; ncols = 100ozoneTemplateRaster = raster(nrow = nrows,ncol = ncols, ext = extent(border)) ozoneTemplateRaster[,] = 0 ozoneGrid = as(ozoneTemplateRaster, 'SpatialGridDataFrame')

Template Raster

Nearby points are more alike than points further away

IDW requires:

- A set of points (with coordinates) of known values
- A set of points at which to interpolate values
- A weight parameter: this determines the rate of decay of influence.
- A distance matrix: take the reciprocal of the values to get the **inverse distance**
- Apply the distance power parameter: It's an exponent:
 - b = 1 corresponds to inverse distance
 - b = 2 corresponds to the square of inverse distance

Inverse Distance Weighting Example: LA Ozone

IDW: Example

weight = 1.0 ++++ ++ + + + + + +╇ + ++ ++

σ

ECO 697DR

IDW: Example

weight = 2.0 ++ ++ ++ ++ ++++++

10

 ∞

ဖ

4

IDW: Example

weight = 3.0 10 +++ ++ +++++++

 ∞

ဖ

4

Example from GIS Geography

https://gisgeography.com/inverse-distance-weighting-idw-interpolation/

Value of unknown point determined by the three nearest known values

For a **power of 1**, that cell value is equal to: ((12/350) + (10/750) + (10/850)) / ((1/350) + (1/750) + (1/850)) = 11.1

For a **power of 2**, that cell value is equal to: = $((12/350^2) + (10/750^2) + (10/850^2)) / ((1/350^2) + (1/750^2) + (1/850^2)) = 11.4$

ECO 697DR

IDW Things To Note

- Interpolated points that are far form data points approach the global average
- High weighting powers increase the local influence: faster decay
- Low weighting powers reduce the local influence, slower decay
- High weighting powers mean greater smoothing
- Low weighting means values quickly decay to the global average