Spatial Data Analysis in R

Deck 1: Introductions

Eco 697DR – University of Massachusetts, Amherst – Spring 2022 Michael France Nelson

Welcome to Spatial Data Analysis in R!

In This Slide Deck

- Introductions
- Course Overview
- Review of Key Concepts

Introductions: About Me

A bit about me...

- Lecturer, Department of Environmental Conservation at UMass
- Experience teaching and using spatial data and analyses in R and ArcGIS
- Background in plant biology and invasion ecology
- I love computers and programming, but I miss working in the field!

Introductions: About You

- What are your research projects and interests?
- What are your learning goals for this course?
- Why are you interested in spatial analysis?

About The Course

Course Structure Overview	We will closely follow the text's Part I: Chapters 1 - 6
 Part 1: Concepts and Techniques 	 Ch. 1: Introduction
Readings	 Ch. 2: Scale, distance concepts
• Lab exercises	 Ch. 3: Land-cover concepts
 Part 2: Main Projects Dataset 	Ch. 4: Spatial statistics: point patterns
 Proposal 	 Ch. 5-6: Spatial dependence
 Methods/results 	 Selected material from later chapters
• Report	

My Expectations

How to succeed in this course

- Active contributions to class!
- Engagement in peer learning and teaching
- Course feedback to me
- Critical thinking
- I don't expect perfection. I'm more interested in your thoughtful learning.
- Contribute to the course Wiki
 - We'll go over how to use the Wiki in a future lab session

About The Text

- Spatial Ecology and Conservation Modeling, Robert Fletcher and Marie-Josée Fortin
- This is a great text, but it's also a first edition
- There are some mismatches in the book code, online supplemental material, and online data
 - Updated code from Robert Fletcher is available in Moodle

About Spatial in R: The sp to sf Transition

A note about spatial data and packages in R

- sp and raster are the core packages for most spatial work in R... at least historically
- R evolves:
 - sf (simple features), terra, and stars (rasters) are the new way
 - New packages play nicely with ggplot and tidyverse
- We will use the sp/raster world in this course
 - The text uses these packages and it's good to know how they work
- Be aware of the transition to the sf world in the coming years.

About The Labs

- Labs are meant to reinforce and supplement the concepts in the text and lectures.
- Labs are loosely based on the book code, with added material to reinforce concepts that I think are important or useful.
- You will need to find some of your own data!
 - Be sure to share any good finds in the Wiki.
- Consider due dates tentative: we'll see how things go and assess as needed.

Starting Points

We need to remember some foundational concepts from

- GIS and Geography
 - Spatial data types
 - Coordinates systems and projections
- Statistics
 - Inferential and descriptive statistics
 - Populations and samples
 - Parameters and statistics
 - Frequentist paradigm
 - Probability theory
 - Hypothesis testing
 - Uncertainty

Course Software and Computer Concepts Review

Course Software

Word processing and spreadsheet software

Key computer concepts

- Paths: absolute and relative
- How to browse files and folders on your OS
- File naming conventions
- R-coding best practices
 - Use code comments
 - Be concise
 - Aim for readability and reproducibility

Review of Statistical Concepts

Sample Statistics

Measures of Center	Measures of Spread
 Mean Great for symmetric data Sensitive to outliers Median Better for skewed data Robust to outliers Mode Helpful for categorical data 	 Min and max Range, size of the range Standard deviation This is most useful for well-behaved data, sensitive to outliers Interquartile range (IQR) More robust to outliers
• Can be problematic if there are ties	

Regression Models

Basic Concepts	Advanced Concepts
 Response variable and predictors (covariates). Neste 	and random effects d effects
 Intercept and slope coefficients Model residuals Basic model diagnostics Model comparison Model residuals This is where you find a lot of spatial 	, especially logistic regression I models

Probability Theory and Distributions

Important Concepts

- Parametric distributions
 - Normal and Poisson
 - Distribution functions
- Independent events
- Law of total probability
- Variance and covariance
- Correlation

Don't Panic!

We're in this together

- This course is not meant to be too theoretical.
- I don't expect you to be an expert on all the concepts on the last several slides.
- We'll review all relevant concepts as needed, and as requested.

Geography/GIS Concepts Review

Key Concepts

- Data types: raster and vector
- Coordinates in raster and vector data
- Vector data types: polygons, lines, points
- Scale: grain and extent
- Projections and coordinate references
- Distance measurements: e.g. Manhattan, Euclidean

Tobler's First Law of Geography

- "Everything is related to everything else, but near things are more related than distant things."
- A key theme in this course is **spatial autocorrelation**. Tobler's law encapsulates the idea of spatial autocorrelation. We'll spend a lot of time learning how to understand, quantify, and deal with spatial autocorrelation.

Spatial Autocorrelation

- Informal definition of spatial autocorrelation: nearby things are more similar than expected by chance alone.
- Spatial autocorrelation of a variable can be the result of (for example)
 - Biotic interactions
 - Gradients
 - Similar abiotic conditions like substrate type, soil chemistry, etc.
 - Genetic similarity
- Spatial autocorrelation is the rule, rather than the exception and we'll spend lots of time on it later!

Types of Spatial Data

Spatial Data Paradigms

Raster	Vector
 Data are stored in a rectangular grid. Cells 	 Data are stored as points. Each point has a set of coordinates Points, lines, polygons
• Coordinates are implicit	 Coordinates are explicit

Vector Data

Vector data represents features as points, lines, and polygons and is best applied to discrete objects with defined shapes and boundaries.

Features have a precise shape and position, attributes and metadata, and useful behavior.

ource: Zeiler, M. 1999. Modeling Our World: The ESRI® Guide to Geodatabase Design. Redlands, CA: ESRI Press. 199 pp.

Vector (Feature) Data

- Vectors can represent:
 - Points
 - Lines
 - Polygons
- All vector data are built from points
 - Each point has a coordinate

Vector Data

- The vector data paradigm associates features with attributes.
- Feature: stores the spatial information.
 - Each vertex in a feature has explicit x- and ycoordinates. This has important consequences!
- Attribute table: stores the associated data values
- Key points:
 - Features and attribute tables are different data structures.
 - They're often stored in separate files.
 - The vector data paradigm associates a particular feature with a particular row in the attribute table.
- Raster data is a fundamentally different way of encoding spatial information.

How should you represent a feature?

Raster Data

Surface of values composed of square **pixels (or cells)** each with a specific **value**

2	2	5	3	3
2	2	5	3	3
2	5	5	3	3
4	5	4	4	3
4	4	5	4	6
1	1	4	5	6
1	1	1	1	5

cnty_grid_v2
cnty_grid_v3
county_grid
dens2
dist_roads

A raster layer is composed of <u>pixels</u>

- Surface of values composed of [usually] square pixels each with a specific value
- Pixels have a specific length/width size (ex. 10 m).
- Pixels may only hold one value.
 - Compare to vector **attributes**

	10 m
10 m	3

Raster Data

What do the pixel values represent??

Raster Data

The Earth's Shape

What is Earth's shape?

Some Possible Models

- Sphere
- Ellipsoid
- Lumpy space potato
- Geoid

Spherical Model

- A useful conceptual simplification.
- But it's a little too simple: The earth has a large equatorial bulge due to rotation around its axis.
- The bulge is enough to matter for coordinate systems:
 - Earth's equatorial bulge is about 40km

Ellipsoid Models

• A measure of flattening: • $f = \frac{a-b}{a}$

Lumpy Space Potato

- The true shape of the earth is more like a lumpy potato with undulations from the ellipsoid as much as 100 m.
- There is also a large bulge in the earth of 10 to 15m in the Southern Hemisphere giving rise to the description of earth as pear shaped.

Source: Paul Bolstad. 2012. GIS Fundamentals – A first text on Geographic Information Systems. 4th ed.

What is Earth's true shape?

- The actual shape of the Earth is a Geoid, literally "Earth Shaped".
- The Geoid is determined by gravitational measurements.
- The Geoid is similar to the Earth's **mean-sea-level** surface.
 - For land, MSL is height to which water would rise in a well that is connected to the ocean.

Terrain, Ellipsoid, and Geoid

http://www.icsm.gov.au/mapping/web_images/cross_section.jpg

Limiting Complexity: Tradeoffs

- All models are wrong, some models are useful.
- The Geoid, while a much simpler shape than the earth's topographic surface is still very complex.
- For most uses, the simpler ellipsoid works well.
- But... How do we choose the "best" ellipsoid?

Local Ellipsoids

Different Ellipsoids are developed to fit the area of interest accurately over the area of interest

Coordinate Systems

Geographic Coordinates and Datums

Coordinate Systems

- To be meaningful, spatial data (whether raster or vector) must be associated with a location.
- Coordinate systems are used for the location or registering of those data

A Planar Coordinate System: The Cartesian plane (x, y) Y 300 $_{P_1}^{P_1}$ (280,000m, 225,000m) 200 100 100 200 300 Origin Χ

Spherical Coordinate System (2D)

We can use non-Euclidean, spherical geometry to define a 2D coordinate system on a 3D object (the ellipsoid).

• Don't worry, we're not going to learn how to do spherical trigonometry!

Latitude: degrees (°) North or South of the Equator

Longitude: degrees (°) East or West of The Prime Meridian

0° Longitude (Prime Meridian)

Spherical Coordinate System (2D)

- The x- and y-coordinates on an ellipsoid model comprise a Geographic Coordinate System (GCS).
- Any time you use degrees, longitude, or latitude you are talking about a GCS.
 - Why do I say a GCS, and not the GCS?
- A GCS lives on the mathematically ideal surface of an ellipsoid model.

Spherical Coordinate System (2D)

- A GCS is not enough to specify locations on Earth's surface, for that we need to anchor the ellipsoid model to specific locations.
- Remember local ellipsoids?
- The pairing of an ellipsoid model (and its GCS) with anchor points is a datum.

What is a Datum?

In surveying and geodesy, a **datum** is a reference point or surface against which position measurements are made, and an associated model of the shape of the earth for computing positions

http://en.wikipedia.org/wiki/Geodetic system

- A geodetic datum is a mathematical model of the earth upon which geodetic computations are based.
- A datum is a reference system with two components:
 - A specified elliposid with a spherical coordinate system and an origin
 - A set of highly accurate surveyed **points** and lines to anchor the ellipsoid
- There are *Regional* and *Global* Datums.

Does it Make a Difference?

- Short answer: yes!
- Long answer: if you don't know which datum your data are tied to, you can be off by 1km or more.
 - This might not matter for some purposes.
 - This could be terribly important for others – it all depends on the scale.

Geographic Coordinate Systems

Recap: so.... What are GCSs and datums?

- A GCS is a set of 2D coordinates, based on spherical geometry/trigonometry, that can uniquely specify a location on an ellipsoid model.
- A datum is a combination of an ellipsoid (with its GCS) and a set of anchor points on the surface of the Earth.

Projected Coordinates

Projected Coordinates and Map Projections

What's a Projected Coordinate System?

- Problem: we need to represent the curved surface of Earth on a 2D flat surface.
- Solution: an algorithm for translating 2D spherical coordinates to 2D flat coordinates.
- Another problem: there are many such algorithms, and all of them cause distortion
- Solutions: different projection types can minimize distortion of shapes, distances, or direction (at the expense of the other attributes).

The Map Projection Principle

- 1. Reference globe
- 2. Developable surface
 - ≻Cylinders
 - ➤Cones
 - ➢ Planes

Projection Techniques

There are 3 primary projection methods:

- Cylindric
- Conic
- Planar

Map Projection Type

Map projections can preserve:

- Shapes conformal map
- Areas equal area maps
- Angles
- Distances
- Directions
- Compromise of
- But... none of the properties are perfectly preserved

Cylindrical Projections

This Photo by Unknown Author is licensed under CC BY-SA

Mercator Projections

- Cylindrical projection developed by Dutch cartographer Gerardus Mercator in 1569
- Preserves shape & direction
- Used widely for navigation charts because direction is preserved.

When would we want to use transverse Mercator?

Conic Projections

This Photo by Unknown Author is licensed under CC BY-SA

Albers Equal Area Conic

Lambert Conformal Conic

Conic: Conformal or Equal Area

- Equal area: Areas of shapes are (mostly) preserved)
 - North and south parallels are squished
- Conformal: Shapes of objects are (mostly) preserved.
 - Central parallels more closely spaced

Azimuthal (planar) Projections

This Photo by Unknown Author is licensed under CC BY-SA

Orthographic (Azimuthal)

Stereographic (Azimuthal)

When would we want to use an Azimuthal projection?

Spatial Operations

- Union
- Intersection
- Buffer
- Tessellation
- Masks
- Reprojecting

Example Area

Wyoming Counties + Yellowstone

Zoom In: Yellowstone + Counties

Park + Teton Counties

Park + Teton Counties + Yellowstone

Union + Dissolve

Park + Teton Counties + Yellowstone

Union With Dissolve: counties + Yellowstone

Union

Park + Teton Counties + Yellowstone

Union Without Dissolve: counties + Yellowstone

Erase 1

ECO 697DR

Erase 2

Park + Teton Counties + Yellowstone

Erase: Yellowstone - Counties

ECO 697DR

Intersection

Park + Teton Counties + Yellowstone

Intersection, Without Dissolve

Intersection

Park + Teton Counties + Yellowstone

Intersection, With Dissolve

 Amaya-Gómez, Rafael, Emilio Bastidas-Arteaga, Franck Schoefs, Felipe Muñoz, and Mauricio Sánchez-Silva. 2020. "A Condition-Based Dynamic Segmentation of Large Systems Using a Changepoints Algorithm: A Corroding Pipeline Case." *Structural Safety* 84 (May): 101912. <u>https://doi.org/10.1016/j.strusafe.2019.101912</u>.