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Overview

For Today

► Regression with continuous and categorical predictors

► Questions and Answers

► Group time for water vole assignment

For Next Week

► ANCOVA, Interactions, Intro to Frequentism, Confidence 
Intervals



This deck’s concepts

► Regressions with continuous and categorical predictors

► Analysis of Covariance: ANCOVA

► Dummy Variables

► Base cases and model coefficients



Regression and ANOVA



Regression with Numerical and Categorical Predictors

What happens if we have data that contain a mix of numerical 
and categorical predictor variables?

► Take a look at the penguin data:

species island bill_depth_mm body_mass_g sex

Adelie Torgersen 18.7 3750 male
Adelie Torgersen 17.4 3800 female
Adelie Torgersen 18.0 3250 female
Adelie Torgersen NA NA NA
Adelie Torgersen 19.3 3450 female
Adelie Torgersen 20.6 3650 male



Eastern White Pines

We have data from a study on eastern white pines from the 
University of Michigan biological station.

► The objective was to determine whether the needle 
temperature varied between intact and disturbed forest 
sites.

► The temperature of needles is important for numerous
ecophysiological processes including transpiration and
photosynthesis/photorespiration rates.

► Photorespiration can occur in overheated or stressed plants 
causing a loss of energy.

► It is a rich dataset, allowing us to address multiple research 
questions.



Graphical Exploration
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Numerical exploration

Let’s take a peek at a summary of the data:

summary(dat_white_pine)
DBH HEIGHT Needle_Temp TREAT

Min. : 0.800 Min. : 1.400 Min. :20.50 intact :30
1st Qu.: 2.420 1st Qu.: 2.300 1st Qu.:23.60 disturbed:33
Median : 3.700 Median : 3.000 Median :25.20
Mean : 4.847 Mean : 3.617 Mean :26.18
3rd Qu.: 6.040 3rd Qu.: 4.750 3rd Qu.:29.56
Max. :22.450 Max. :10.000 Max. :34.10



ANOVA

We could use a t-test on the two site types:

t.test(Needle_Temp ~ TREAT, data = dat_white_pine)

Welch Two Sample t - t es t  

data : Needle_Temp by TREAT
t = 5.7968, df = 54.177, p-value = 0.0000003569
alternative hypothesis: true difference in means i s not equal to 0
95 percent confidence interval :

2.750419 5.658490
sample estimates:

mean in group i ntact mean in group disturbed
28.38567 24.18121



ANOVA

But. . . our data set contains other information. 

What if tree height is also an important factor?

► If so, it could improve our model.

We want something like a multiple regression using:

► disturbance treatment (a factor)

► tree height (a number)

However we are mixing categorical and numeric variables!



ANCOVA

When we build a regression model using a mix of categorical 
and numeric data, it is referred to as Analysis of Covariance: 
ANCOVA.

WE can build an additive model of needle temperature as 
predicted by tree height and site disturbance.

The syntax in R is identical to a multiple regression:

f i t 1 = lm(Needle_Temp ~ HEIGHT + TREAT, data = dat_white_pine)

► Recall that TREAT is the disturbance factor.



ANCOVA Model Table

Let’s interpret the model table:

Cal l :
lm(formula = Needle_Temp ~ HEIGHT + TREAT, data = dat_white_pine)

Residuals:
Min 1Q Median 3Q Max

-6.8457 -1.8109 0.6136 1.6649 9.9555

Estimate Std. Error t value Pr(>|t|)
Coefficients:

(Intercept) 28.7968 0.8644 33.315 < 0.0000000000000002 ***
HEIGHT -0.1091
TREATdisturbed -4.2357

0.1831 -0.596
0.7219 -5.867

0.553
0.000000204 ***

- - -
S i gni f . codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1

Residual standard error : 2.854 on 60 degrees of freedom
Multiple R-squared: 0.3648, Adjusted R-squared: 0.3436
F-s t a t i s t i c : 17.23 on 2 and 60 DF, p-value: 0.000001224



Interpreting the Model Coefficients

Let’s look at just the coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.7967651 0.8643722 33.315238 0.0000000
HEIGHT -0.1091412 0.1830896 -0.596108 0.5533454
TREATdisturbed -4.2357086 0.7219018 -5.867431 0.0000002

Can we interpret the HEIGHT coefficient?



The Disturbance Coefficient

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.7967651 0.8643722 33.315238 0.0000000
HEIGHT -0.1091412 0.1830896 -0.596108 0.5533454
TREATdisturbed -4.2357086 0.7219018 -5.867431 0.0000002

Can we interpret the disturbance coefficient?

► First, why does it have a funny name?

► TREATdisturbed looks like a combination of the column 
name and one of its factor levels!

levels(dat_white_pine$TREAT)
[ 1 ] " intact" "disturbed"



Announcements

• Default group – We cannot grade
• Grades will convert to zeroes at end of 

semester
• We can’t grade RMd file or R scripts (unless 

we specifically ask for them)
• You should render your RMds or 

compile things into a document
• Office hours

• Ana and myself are available if you 
can’t make the posted office hours

• It’s an easy 5% of your grade!



Coding Factors: Dummy Variables and the
Design Matrix I



The Data

As a reminder, the White Pine data look like:

DBH HEIGHT Needle_Temp TREAT

1 12.10 7 29 intact
40 10.42 8 23 disturbed

Note that TREAT has two levels: “intact”, and “disturbed”.



Dummy Variables

We could define a new column named “TREATdisturbed” that 
contains 0 values if the observation is “intact”, or 1 if 
“disturbed”:

dat_white_pine$TREATdisturbed =
as.numeric(dat_white_pine$TREAT == "disturbed")

You can think of the new column as a new numeric predictor 
for which we only have observations of 1 and 0.

DBH HEIGHT Needle_Temp TREAT TREATdisturbed

1 12.10 7 29 intact 0
40 10.42 8 23 disturbed 1

Question: In our new column, what is the base case?



Dummy Model Fit

To prove to ourselves that R is doing this behind the scenes, 
let’s fit a model using our new predictor variable:

f i t 2 = lm(
formula = Needle_Temp ~ HEIGHT + TREATdisturbed,
data = dat_white_pine)



Dummy Model Summary

Here’s the model summary for the new fit:

Cal l :
lm(formula = Needle_Temp ~ HEIGHT + TREATdisturbed, data = dat_white_pine)

Residuals:
Min 1Q Median 3Q Max

-6.8457 -1.8109 0.6136 1.6649 9.9555

Estimate Std. Error t value Pr(>|t|)
Coefficients:

(Intercept) 28.7968 0.8644 33.315 < 0.0000000000000002 ***
HEIGHT -0.1091
TREATdisturbed -4.2357

0.1831 -0.596
0.7219 -5.867

0.553
0.000000204 ***

- - -
S i gni f . codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1

Residual standard error : 2.854 on 60 degrees of freedom
Multiple R-squared: 0.3648, Adjusted R-squared: 0.3436
F-s t a t i s t i c : 17.23 on 2 and 60 DF, p-value: 0.000001224



Comparing the Factor and Dummy Models

We’ll check that the coefficient values are the same for the two 
models:

The factor variable model:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.7967651 0.8643722 33.315238 0.0000000
HEIGHT -0.1091412 0.1830896 -0.596108 0.5533454
TREATdisturbed -4.2357086 0.7219018 -5.867431 0.0000002

The dummy variable model:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.7967651 0.8643722 33.315238 0.0000000
HEIGHT -0.1091412 0.1830896 -0.596108 0.5533454
TREATdisturbed -4.2357086 0.7219018 -5.867431 0.0000002



The Design Matrix

When R builds a model, it can only work with numeric data.

Behind the scenes, R makes a new numeric column out of the 
factor column so that it can perform mathematical operations.

To build the model, R extracts the columns that we specify in 
the model formula:

Needle_Temp TREATdisturbed HEIGHT
1 29.00 0 7.0
2 29.00 0 2.5
3 29.20 0 3.0
4 30.00 0 5.0
5 30.35 0 2.5
6 31.00 0 1.7



The Design Matrix

Notice the similarity to the regression equation:

► Needle_Temp is the y

► TREATdisturbed is x1

► HEIGHT is x2

N eedleTemp = β0 + β1 ∗ TREATdisturbed + β2 ∗HEIGHT

Or more formally:

yi = β0 + β1 ∗ x1i + β2 ∗ x2i + E



ANCOVA Model

Cal l :
lm(formula = Needle_Temp ~ HEIGHT + TREAT, data = dat_white_pine)

Residuals:
Min 1Q Median 3Q Max

-6.8457 -1.8109 0.6136 1.6649 9.9555

Estimate Std. Error t value Pr(>|t|)
Coefficients:

(Intercept) 28.7968 0.8644 33.315 < 0.0000000000000002 ***
HEIGHT -0.1091
TREATdisturbed -4.2357

0.1831 -0.596
0.7219 -5.867

0.553
0.000000204 ***

- - -
S i gni f . codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1

Residual standard error : 2.854 on 60 degrees of freedom
Multiple R-squared: 0.3648, Adjusted R-squared: 0.3436
F-s t a t i s t i c : 17.23 on 2 and 60 DF, p-value: 0.000001224



ANOVA and Regression

The concept of dummy variables is the key to understanding 
the connection between linear regression and ANOVA!

The pine data had only two disturbance treatments, and 1 
dummy variable.

• How many dummy variables would we need if there were 3
treatments?



Categorical Variables and Model Coefficients



Model Coefficientables for Categorical Predictors

Let’s step back and build a linear model of pine needle 
temperature predicted only by disturbance:

Cal l :
lm(formula = Needle_Temp ~ TREAT, data = dat_white_pine)

Residuals:
Min 1Q Median 3Q Max

-6.7857 -1.7312 0.6143 1.6143 9.8988

Coefficients:
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 28.3857 0.5183 54.763 < 0.0000000000000002 ***
TREATdisturbed -4.2045 0.7162 -5.871 0.000000193 ***
- - -
S i gni f . codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1

Residual standard error : 2.839 on 61 degrees of freedom
Multiple R-squared: 0 .361 , Adjusted R-squared: 0.3505
F-s t a t i s t i c : 34.46 on 1 and 61 DF, p-value: 0.0000001926



Comparing Model Cofficients and the ANOVA Table I

The ANOVA table for our needle temperature ~ disturbance 
model:

Df Sum Sq Mean Sq F value Pr(>F)

TREAT
Residuals

1 277.7883 277.78831 34.46467 0.0000002
61 491.6655 8.06009 NA NA

We’ve worked with ANOVA tables before.

► what are the among- and within-group degrees of freedom?

► Does disturbance status seem important?



Comparing Model Cofficients and the ANOVA Table II

Now the model coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.385667
TREATdisturbed -4.204454

0.5183335 54.763322 0.0000000
0.7161807 -5.870661 0.0000002

How do we interpret them?



Categorical Predictor Base Cases

Note that the model coefficient for disturbance treatment 
contains the text disturbed.

► This tells us something important: the intact level of 
disturbance is a base case.

► Base cases are represented as intercept terms in models 
with categorical predictors.

► The base factor level determines how R calculates the 
intercept and slope:

► R considers the first factor level to be the base case

levels(factor(dat_white_pine$TREAT))
[ 1 ] " intact" "disturbed"

What is the base case for penguin species?



Base Case Graphical Intuition I

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.385667 0.5183335 54.763322 0.0000000
TREATdisturbed -4.204454 0.7161807 -5.870661 0.0000002

It looks like the intercept corresponds to the mean needle 
temperature of trees in intact sites:
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Base Case Graphical Intuition II

► It looks like the the temperature in disturbed sites is about 
4 degrees cooler than in intact sites. This is the value of
the TREATdisturbed slope coefficient!
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Base Case and Slope Interpretation

You can understand the model coefficients for a predictor 
variable as:

► The base case (the intercept) is the mean value of 
observations within the base group.

► The slope tells you the difference between the base case 
and the other groups.

This makes sense when we think in terms of dummy variables.



Categorical Variable With 3 Levels

The penguins data set has three species: Adelie, Chinstrap, and 
Gentoo. What is the base penguin species?

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3700.66225 37.61935 98.3712321 0.0000000
speciesChinstrap 32.42598 67.51168 0.4803018 0.6313226
speciesGentoo 1375.35401 56.14797 24.4951686 0.0000000

How heavy are Gentoo penguins?
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