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This deck’s concepts

Additive and interactive models

Y

Model coefficient tables
Model coefficients and ANOVA

Y

Y

» Model assumptions and diagnostics



Example System: Whitebark Pine

To illustrate additive and interactive models, we'll return to the

Whitebark Pine Data.

Predictor 1: Average Annual Precipitation
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Predictor 2: Elevation
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Example System: Whitebark Pine

The scenario: you think that elevation and average annual
precipitation may be related to tree stem diameter (dbh).

The variables:

» Response: dbh (diameter at breast height)
» Predictor 1: Elevation

= Predictor 2: Average Annual Rainfall



Additive Models

Recall the additive multiple regression concepts:

The regression does the following:

» Simultaneously quantifies the magnitude and significance of
predictor 1 and 2.

> Quantifies the relationship between predictor 1 and
response, independent of the effects of predictor 2.

> Quantifies the relationship between predictor 2 and
response, independent of the effects of predictor 1.



Additive Models

An additive model assumes that the effects of predictors 1 and
2 on the response are completely independent.

In the context of our Whitebark pine data

» There is no joint effect of changing the elevation and water
simultaneously.



Additive Models: Coefficient Interpretation

Each coefficient is the expected change when all other predictors
are held constant.

Additive effect coefficient 1:

» “How many units does the response change when I increase
the predictor 1 by 1 unit, if I hold the value of predictor 2
constant.”

Additive effect coefficient 2:

» “How many units does the response change when I increase
the predictor 2 by 1 unit, if I hold the value of predictor 1
constant.”



Interactive Effects: Joint Effect

Recall the additive multiple regression concepts:

The interactive regression adds one procedure

» Simultaneously quantifies the magnitude and significance of
predictor 1 and 2.

> Quantifies the relationship between predictor 1 and
response, independent of the effects of predictor 2.

> Quantifies the relationship between predictor 2 and
response, independent of the effects of predictor 1.

> Quantifies the joint effect of predictor 1 and predictor 2 on
the response.



Interactive Effects: Interpretation

An interaction is an extra change, above and beyond what you
would expect if you increase both predictors by 1 unit.

Interactive effect coefficient:

> “How many more (or less) units does the response change,
when I increase both predictors by 1 unit.”



Interactive Effects: Sign of the Interaction

If the interaction coefficient is positive:

> Increasing both predictors by 1 unit increases the response
by more than the sum of the two additive coefficients.

If the interaction coefficient is zero:

> Increasing both predictors by 1 unit increases the response
by exactly the sum of the two additive coefficients.

If the interaction coefficient is negative:

= Increasing both predictors by 1 unit increases the response
by less than the sum of the two additive coefficients.



Interactive Effects: Joint Effect

If an interaction is present
» The two predictors have a joint effect on the response.

» The joint effect can’t be predicted from the individual
effects alone.

> An interaction may mean that the two predictors somehow
“work together” to influence the response.

» The predictors have a synergistic or inhibiting effect on
the response.



Interactions: Whitebark Pine

We think that both altitude and rainfall influence the diameter
of whitebark pine stems.

head(dat_whitebark)

X rainfall altitude dbh
1 1 20.44596 2493.433 47.08338
2 2 33.23555 2301.189 52.09458
3 3 31.15216 2328.082 51.69528
4 4 25.24166 2390.111 49.53393
5 5 29.35912 2227.444 51.96837
6 6 28.51941 2421.535 49.85675

We'll fit additive and interactive models.



Interactions: Whitebark Pine Models

An additive multiple regression model:

fit_pine_additive = Im(
dbh ~ altitude + rainfall,
data = dat_whitebark)

An interactive multiple regression model:

fit_pine_interact = Im(
dbh ~ altitude * rainfall,
data = dat_whitebark)



Additive Model Coefficents

Call:
Im(formula = dbh ~ altitude + rainfall, data
Residuals:

Min 1Q Median

Coefficients:

= dat_whitebark)

Max
-1.61668 -0.38439 0.06462 0.35778 1.34592

Estimate Std. Error t value Pr(>Itl)

(Intercept) 75.6535333 0.8418852

altitude -0.0123821 0.0003306
rainfall 0.1304770  0.0116813

Signif. codes: 0 "***’ 0.001 "**” 0.01 "*” 0.05 .

<2e-16

<2e-16
<2e-16

701771

Residual standard error: 0.5976 on 86 degrees of freedom

Multiple R-squared: 0.9437, Adjusted R-squared:

0.9423

F-statistic: 720.1 on 2 and 86 DF, p-value: < 2.2e-16



Additive Model Coefficients: In English

How can we state the output of the model table in plain
English?

Recall the coefficients:

» altitude (measured in meters): -0.012

» rainfall (measured in cm): 0.13

“If I hold the altitude constant, for every 1cm increase in
precipitation, I expect dbh to be 0.13 cm larger.”

“If I hold the precipitation constant, for every 1 m increase in
altitude, I expect dbh to be -0.012 cm smaller.”



Interactive Model Coefficients

Call:
Im(formula = dbh ~ altitude * rainfall, data = dat_whitebark)
Residuals:

Min 1Q Median 3Q Max
-1.66883 -0.30129 0.05161 0.32162 1.29048
Coefficients:

Estimate Std. Error t value Pr(>Itl)

(Intercept) 57.6240619 4.6659847 12.350 < 2e-16 ***
altitude -0.0050139 0.0019048 -2.632 0.010075 *
rainfall 0.7155606  0.1496823 4.781 7.26e-06 ***

altitude:rainfall -0.0002387 0.0000609 -3.919 0.000179 ***

Signif. codes: 0 "***’ (0.001 "**” 0.01 "*” 0.05".” 0.1~ " 1

Residual standard error: 0.5532 on 85 degrees of freedom
Multiple R-squared: 0.9523, Adjusted R-squared: 0.9506
F-statistic: 565.3 on 3 and 85 DF, p-value: < 2.2e-16



Interactive Model Coefficients: In English

How can we state the output of the model table in plain
English?

Recall the coefficients:

= altitude: -0.005
= rainfall: 0.7156

» rainfall/altitude interaction: —2 X 1074

“There is an inhibiting interaction: If I increase the altitude by
1 m and the rainfall by 1 cm, the increase in dbh is =2 x 10~
less than what I would predict from the rainfall and altitude
coefficients alone.”



Additive and Interactive Coefficients

What happened to the main effect coefficients?
In the additive model:

= altitude: -0.012
» rainfall: 0.13
In the interactive model:

= altitude: -0.005
= rainfall: 0.7156



Interactions

What do we know about interactions?

How do we tell if an interaction is significant?
» We could look at an ANOVA table:

Analysis of Variance Table

Response: dbh
Df Sum Sq Mean Sq F value Pr(>F)

altitude 1 469.76 469.76 1535.090 < 2.2e-16 ***
rainfall 1 44.55 44.55 145.593 < 2.2e-16 ***
altitude:rainfall 1 4.70 4.70 15.359 0.0001792 ***
Residuals 85 26.01 0.31

Signif. codes: 0 "***’ (0.001 "**” 0.01 "*” 0.05".” 0.1~ 7 1



Relative Importance of Effects: Standardizing the

Variables

Which is a more important predictor for DBH?

» The model coefficients are in terms of units, so they are

hard to compare.

We can standardize (scale) the variables to make them unitless
before we create the models. R makes this pretty easy:

dat_whitebark_scaled = data.frame(scale(dat_whitebark))

head(dat_whitebark_scaled)

X rainfall altitude

-1.664343 0.5190889 -0.7814965
-1.625637  0.1406553 -0.6432565
-1.586932 -0.9329511 -0.3244115
-1.548226 -0.1850408 -1.1605679
-1.509520 -0.3375675 -0.1628828

N WN =

dbh

-1.703049 -1.8040603 0.2066960 -0.8669988

1.1466020
0.9861529
0.1176818
1.0958872
0.2473982



Coefficients: Interactive Standardized Model

Call:
Im(formula = dbh ~ altitude * rainfall, data = dat_whitebark_scaled)
Residuals:

Min 1Q Median 3Q Max
-0.67057 -0.12106 0.02074 0.12923 0.51854
Coefficients:

Estimate Std. Error t value Pr(>Itl)

(Intercept) 0.01391 0.02383  0.584 0.561016
altitude -0.95866 0.02404 -39.882 < 2e-16 ***
rainfall 0.28776 0.02392 12.029 < 2e-16 ***

altitude:rainfall -0.10271 0.02621 -3.919 0.000179 ***

Signif. codes: 0 "***’ (0.001 "**’ 0.01 "*” 0.05".” 0.1 "~ " 1

Residual standard error: 0.2223 on 85 degrees of freedom
Multiple R-squared: 0.9523, Adjusted R-squared: 0.9506
F-statistic: 565.3 on 3 and 85 DF, p-value: < 2.2e-16



ANOVA Table: Interactive Standardized Model

Analysis of Variance Table

Response: dbh
Df Sum Sq Mean Sq F value Pr(>F)

altitude 1 75.848 75.848 1535.090 < 2.2e-16 ***
rainfall 1 7.194 7.194 145.593 < 2.2e-16 ***
altitude:rainfall 1 0.759 0.759 15.359 0.0001792 ***
Residuals 85 4.200 0.049

Signif. codes: 0 "***’ 0.001 "**” 0.01 "*” 0.05".” 0.1 " " 1



Scaled Plot

So... Which predictor is “more important”?

» What makes it seem more important?

Can we draw any intuition from the scaled plot?

Predictor 1: Average Annual Precipitation

rainfall

Predictor 2: Elevation

altitude



Model Diagnostics

Remember the assumptions we made when we decided to use
linear regression?

Two of the most important are:

> Normally-distributed residuals

» Independent observations

How do we know if they have been met?



Model Diagnostics: Normality of the Residuals

We'll focus on the assumption of Normally-distributed residuals.

I'll describe 3 approaches:

» Histogram of residuals
= Shapiro test of normality of the residuals
» Model plots:

Residuals vs. predicted values

Quantile-Quantile plot



Model Diagnostics: Cars data

Recall our linear regression model of stopping distance and
speed?

summary(fit_cars)

Call:
Im(formula = dist ~ speed, data = cars)
Residuals:

Min 1Q Median 3Q Max
-29.069 -9.525 -2.272  9.215 43.201
Coefficients:

Estimate Std. Error t value Pr(>Itl)

(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***

Signif. codes: 0 “***’ 0.001 "**’ 0.01 "*” 0.05".” 0.1 "~ 7 1



Model Diagnostics: Cars data

hist(residuals(fit_cars))

Histogram of residuals(fit_cars)
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Model Diagnostics: Cars data

shapiro.test(residuals(fit_cars))

Shapiro-Wilk normality test

data: residuals(fit_cars)
W= 0.94509, p-value = 0.02152

Do we think our residuals are normally distributed?

» What is the null hypothesis of the Shapiro test?



Model Diagnostics: Cars data

par(mfrow = c(1, 2))
plot(fit_cars, which =
plot(fit_cars, which
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Model Diagnostics: Interpretation

How can we interpret these diagnostics?

» Residuals should be normal:

histogram
residual plot

Shapiro test

= Q-Q plot

Normally-distributed residuals produce a straight line



Model Diagnostics: Whitebark Pine - Graphical

We created additive and interactive models of the whitebark
pine. We could compare their residuals?

Whitebark Pine Whitebark Pine
Additive Model Interactive Model
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Model Diagnostics: Whitebark Pine - Numerical

What do the Shapiro tests tell us?

shapiro.test(residuals(fit_pine_additive))

Shapiro-Wilk normality test

data: residuals(fit_pine_additive)
W= 0.98937, p-value = 0.6916

shapiro.test(residuals(fit_pine_interact))

Shapiro-Wilk normality test

data: residuals(fit_pine_interact)
W= 0.98506, p-value = 0.4015



Model Diagnostics: Whitebark Pine - Additive Model
Plots

Model plots for the additive model:

Residuals vs Fitted Normal Q-Q
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Model Diagnostics: Whitebark Pine - Interactive Model
Plots

Model plots for the interactive model:

Residuals vs Fitted Normal Q-Q
T ° 05620 P @20
8 N o (eTe] S N :
& b=l
- ©® D - -
® -+ o
g S 41— _mé)o o o0 5 o -
% | CEE Oo o5 g
14 o @O o o g [N
T o © e
. I} 1 o
o 210 7] o oz
N T T T T T T T T T T T T
44 46 48 50 52 54 56 -2 -1 0 1 2

Fitted values Theoretical Quantiles



Model Diagnostics: Assessing Normality

What are 3 ways we can assess the normality assumption?



Model Diagnostics: Assessing Normality

What are 3 ways we can assess the normality assumption?

* Graphical: histogram of residuals (not the data!)
* Graphical: Q-Q plot

* Numerical: Shapiro test of residuals
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