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This deck’s concepts

► Additive and interactive models

► Model coefficient tables

► Model coefficients and ANOVA

► Model assumptions and diagnostics



Example System: Whitebark Pine

To illustrate additive and interactive models, we’ll return to the 
Whitebark Pine Data.

Predictor 1: Average Annual Precipitation Predictor 2: Elevation
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Example System: Whitebark Pine

The scenario: you think that elevation and average annual 
precipitation may be related to tree stem diameter (dbh).

The variables:

► Response: dbh (diameter at breast height)

► Predictor 1: Elevation

► Predictor 2: Average Annual Rainfall



Additive Models

Recall the additive multiple regression concepts: 

The regression does the following:

► Simultaneously quantifies the magnitude and significance of 
predictor 1 and 2.

► Quantifies the relationship between predictor 1 and 
response, independent of the effects of predictor 2.

► Quantifies the relationship between predictor 2 and 
response, independent of the effects of predictor 1.



Additive Models

An additive model assumes that the effects of predictors 1 and 
2 on the response are completely independent.

In the context of our Whitebark pine data

► There is no joint effect of changing the elevation and water
simultaneously.



Additive Models: Coefficient Interpretation

Each coefficient is the expected change when all other predictors 
are held constant.

Additive effect coefficient 1:

► “How many units does the response change when I increase 
the predictor 1 by 1 unit, if I hold the value of predictor 2 
constant.”

Additive effect coefficient 2:

► “How many units does the response change when I increase 
the predictor 2 by 1 unit, if I hold the value of predictor 1 
constant.”



Interactive Effects: Joint Effect

Recall the additive multiple regression concepts: 

The interactive regression adds one procedure

► Simultaneously quantifies the magnitude and significance of 
predictor 1 and 2.

► Quantifies the relationship between predictor 1 and 
response, independent of the effects of predictor 2.

► Quantifies the relationship between predictor 2 and 
response, independent of the effects of predictor 1.

► Quantifies the joint effect of predictor 1 and predictor 2 on 
the response.



Interactive Effects: Interpretation

An interaction is an extra change, above and beyond what you 
would expect if you increase both predictors by 1 unit.

Interactive effect coefficient:

► “How many more (or less) units does the response change, 
when I increase both predictors by 1 unit.”



Interactive Effects: Sign of the Interaction

If the interaction coefficient is positive:

► Increasing both predictors by 1 unit increases the response 
by more than the sum of the two additive coefficients.

If the interaction coefficient is zero:

► Increasing both predictors by 1 unit increases the response 
by exactly the sum of the two additive coefficients.

If the interaction coefficient is negative:

► Increasing both predictors by 1 unit increases the response 
by less than the sum of the two additive coefficients.



Interactive Effects: Joint Effect

If an interaction is present

► The two predictors have a joint effect on the response.

► The joint effect can’t be predicted from the individual 
effects alone.

► An interaction may mean that the two predictors somehow 
“work together” to influence the response.

► The predictors have a synergistic or inhibiting effect on 
the response.



Interactions: Whitebark Pine

We think that both altitude and rainfall influence the diameter 
of whitebark pine stems.

head(dat_whitebark)

X r a in fa l l altitude dbh
1 1 20.44596 2493.433 47.08338
2 2 33.23555 2301.189 52.09458
3 3 31.15216 2328.082 51.69528
4 4 25.24166 2390.111 49.53393
5 5 29.35912 2227.444 51.96837
6 6 28.51941 2421.535 49.85675

We’ll fit additive and interactive models.



Interactions: Whitebark Pine Models

An additive multiple regression model:

fit_pine_additive = lm(
dbh ~ altitude + r a i n fa l l ,  
data = dat_whitebark)

An interactive multiple regression model:

fit_pine_interact = lm(
dbh ~ altitude * r a i n fa l l ,  
data = dat_whitebark)



Additive Model Coefficents

Call :
lm(formula = dbh ~ altitude + r a i n f a l l , data = dat_whitebark)

Residuals:
Min 1Q Median 3Q Max

-1.61668 -0.38439 0.06462 0.35778 1.34592

Coefficients:
Estimate Std. Error t value Pr(>|t|) 

( Intercept) 75.6535333 0.8418852 89.86 <2e-16 ***
altitude -0.0123821 0.0003306 -37.46
rainfa l l 0.1304770 0.0116813 11.17

<2e-16 ***
<2e-16 ***

- - -
S ign i f . codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1

Residual standard error : 0.5976 on 86 degrees of freedom 
Multiple R-squared: 0.9437, Adjusted R-squared: 0.9423 
F - s t a t i s t i c : 720.1 on 2 and 86 DF, p-value: < 2.2e-16



Additive Model Coefficients: In English

How can we state the output of the model table in plain 
English?

Recall the coefficients:

► altitude (measured in meters): -0.012

► rainfall (measured in cm): 0.13

“If I hold the altitude constant, for every 1cm increase in 
precipitation, I expect dbh to be 0.13 cm larger.”

“If I hold the precipitation constant, for every 1 m increase in 
altitude, I expect dbh to be -0.012 cm smaller.”



Interactive Model Coefficients

Call :
lm(formula = dbh ~ altitude * r a i n f a l l , data = dat_whitebark)

Residuals:
Min 1Q

-1.66883 -0.30129
Median 3Q Max

0.05161 0.32162 1.29048

Coefficients:

(Intercept) 
altitude

Estimate Std. Error t value Pr(>|t|) 
57.6240619 4.6659847 12.350 < 2e-16 ***
-0.0050139 0.0019048 -2.632 0.010075 *

ra infa l l 0.7155606 0.1496823 4.781 7.26e-06 ***
a l t i tude: ra in fa l l -0.0002387 0.0000609 -3.919 0.000179 ***
- - -
S ign i f . codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1

Residual standard error : 0.5532 on 85 degrees of freedom 
Multiple R-squared: 0.9523, Adjusted R-squared: 0.9506 
F - s t a t i s t i c : 565.3 on 3 and 85 DF, p-value: < 2.2e-16



Interactive Model Coefficients: In English

How can we state the output of the model table in plain 
English?

Recall the coefficients:

► altitude: -0.005

► rainfall: 0.7156

► rainfall/altitude interaction: −2 × 10−4

“There is an inhibiting interaction: If I increase the altitude by 
1 m and the rainfall by 1 cm, the increase in dbh is −2 × 10−4 

less than what I would predict from the rainfall and altitude 
coefficients alone.”



Additive and Interactive Coefficients

What happened to the main effect coefficients? 

In the additive model:

► altitude: -0.012

► rainfall: 0.13

In the interactive model:

► altitude: -0.005

► rainfall: 0.7156



Interactions

What do we know about interactions?

How do we tell if an interaction is significant?

► We could look at an ANOVA table:

Analysis of Variance Table 

Response: dbh
Df Sum Sq Mean Sq F value Pr(>F) 

altitude 1 469.76 469.76 1535.090 < 2.2e-16 ***
ra infa l l 1 44.55 44.55 145.593 < 2.2e-16 ***

4.70 15.359 0.0001792 ***
0.31

a l t i tude: ra in fa l l 1 4.70
Residuals 85 26.01
- - -
S ign i f . codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1



Relative Importance of Effects: Standardizing the 
Variables

Which is a more important predictor for DBH?

► The model coefficients are in terms of units, so they are 
hard to compare.

We can standardize (scale) the variables to make them unitless
before we create the models. R makes this pretty easy:
dat_whitebark_scaled = data.frame(scale(dat_whitebark)) 
head(dat_whitebark_scaled)

X rainfa l l altitude dbh
1 -1.703049 -1.8040603 0.2066960 -0.8669988
2 -1.664343 0.5190889 -0.7814965 1.1466020
3 -1.625637 0.1406553 -0.6432565 0.9861529
4 -1.586932 -0.9329511 -0.3244115 0.1176818
5 -1.548226 -0.1850408 -1.1605679 1.0958872
6 -1.509520 -0.3375675 -0.1628828 0.2473982



Coefficients: Interactive Standardized Model

Call :
lm(formula = dbh ~ altitude * r a i n f a l l , data = dat_whitebark_scaled)

Residuals:
Min 1Q Median 3Q Max

-0.67057 -0.12106 0.02074 0.12923 0.51854

Coefficients:

(Intercept) 
altitude

Estimate Std. Error t value Pr(>|t|) 
0.01391 0.02383 0.584 0.561016

-0.95866 0.02404 -39.882 < 2e-16 ***
ra infa l l 0.28776
a l t i tude: ra in fa l l -0.10271

0.02392 12.029 < 2e-16 ***
0.02621 -3.919 0.000179 ***

- - -
S ign i f . codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1

Residual standard error : 0.2223 on 85 degrees of freedom 
Multiple R-squared: 0.9523, Adjusted R-squared: 0.9506 
F - s t a t i s t i c : 565.3 on 3 and 85 DF, p-value: < 2.2e-16



ANOVA Table: Interactive Standardized Model

Analysis of Variance Table

Response: dbh
Df Sum Sq Mean Sq F value Pr(>F) 

altitude 1 75.848 75.848 1535.090 < 2.2e-16 ***
ra infa l l 1 7.194 7.194 145.593 < 2.2e-16 ***

0.759 15.359 0.0001792 ***
0.049

a l t i tude: ra in fa l l 1 0.759
Residuals 85 4.200
- - -
S ign i f . codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1



Scaled Plot

So. . . Which predictor is “more important”?

► What makes it seem more important?

Can we draw any intuition from the scaled plot?
Predictor 1: Average Annual Precipitation Predictor 2: Elevation
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Model Diagnostics

Remember the assumptions we made when we decided to use 
linear regression?

Two of the most important are:

► Normally-distributed residuals

► Independent observations

How do we know if they have been met?



Model Diagnostics: Normality of the Residuals

We’ll focus on the assumption of Normally-distributed residuals. 

I’ll describe 3 approaches:

► Histogram of residuals

► Shapiro test of normality of the residuals

► Model plots:

► Residuals vs. predicted values

► Quantile-Quantile plot



Model Diagnostics: Cars data

Recall our linear regression model of stopping distance and 
speed?

summary(fit_cars)

Cal l :
lm(formula = dist ~ speed, data = cars)

Residuals:
Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coefficients:
Estimate Std. Error t value Pr(>|t|) 

( Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***
- - -
S igni f . codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1



Model Diagnostics: Cars data

hist(residuals(fit_cars))

Histogram of residuals(fit_cars)
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Model Diagnostics: Cars data

shapiro.test(residuals(fit_cars))

Shapiro-Wilk normality test

data: residuals(fit_cars)
W= 0.94509, p-value = 0.02152

Do we think our residuals are normally distributed?

► What is the null hypothesis of the Shapiro test?



Model Diagnostics: Cars data

par(mfrow = c ( 1 , 2) )
plot ( f i t_cars , which = 1)
plot ( f i t_cars , which = 2)
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Model Diagnostics: Interpretation

How can we interpret these diagnostics?

► Residuals should be normal:

► histogram

► residual plot

► Shapiro test

► Q-Q plot

► Normally-distributed residuals produce a straight line



Model Diagnostics: Whitebark Pine - Graphical

We created additive and interactive models of the whitebark 
pine. We could compare their residuals?

Whitebark Pine
Additive Model
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Model Diagnostics: Whitebark Pine - Numerical

What do the Shapiro tests tell us?

shapiro.test(residuals(fit_pine_additive))

Shapiro-Wilk normality test

data: residuals(fit_pine_additive) 
W= 0.98937, p-value = 0.6916

shapiro.test(residuals(fit_pine_interact))

Shapiro-Wilk normality test

data: residuals(fit_pine_interact) 
W= 0.98506, p-value = 0.4015



Model Diagnostics: Whitebark Pine - Additive Model 
Plots

Model plots for the additive model:
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Model Diagnostics: Whitebark Pine - Interactive Model 
Plots

Model plots for the interactive model:
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Model Diagnostics: Assessing Normality

What are 3 ways we can assess the normality assumption?



Model Diagnostics: Assessing Normality

What are 3 ways we can assess the normality assumption?

• Graphical: histogram of residuals (not the data!)
• Graphical: Q-Q plot
• Numerical: Shapiro test of residuals
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