Intro to Quantitative Ecology UMass Amherst – Michael France Nelson

Deck 8: Correlations and Associations

Announcements

- Monday is the deadline to withdraw from a course, or convert to P/F.
 - Some of you have been working with Ana and/or me to get caught up! This is great!
 - If you are very behind, and you haven't reached out, you need to consider your options wisely.

Announcements: UMass Incomplete Policy

- Students who are unable to complete course requirements within the allotted time because of severe medical or personal problems may request a grade of Incomplete from the instructor of the course and must complete an Incomplete Grade Form.
- Incomplete grades are warranted only if a student is passing the course at the time of the request and if the course requirements can be completed by the end of the following semester.

Additional info

- An incomplete cannot serve as a substitute for a non-passing grade.
- Additional complication: This is my last semester at UMass, so completing outstanding work for an incomplete won't be simple.

Final Project Info!

Final Project Components

The final project consists of:

- 1. A set of take-home questions.
 - These will be made available on Moodle in finals week. They're not on the public-facing course website.
- 2. A take-home R guide
 - I provide a RMarkdown template file, you fill in the details!
 - The template is available now, you may take a look at any time.
 - You can (and should) adapt material from your assignments for the guide.
 - You'll fill in all material in square brackets and make all requested code adjustments.

Key Terms

- Continuous/numerical variables
- Categorical variables
- Functions:
 - Linear, exponential, Logarithmic, polynomial, square root
 - Monotonic (always increasing, always decreasing, or flat; no humps)
- Variance and covariance
- Correlation: Spearman and Pearson
- Slope vs. correlation
- Contingency and two-way tables
- Chi-square test

Correlation: What is it?

Let's step back... What is correlation?

We can ask: On a scale of -1.0 to 1.0, how highly coordinated are the variables in this scatterplot?

Correlation: Intuition

On a scale of -1.0 to 1.0, how highly coordinated are the variables in these plots?

Correlation: Intuition

On a scale of -1.0 to 1.0, how highly coordinated are the variables in these plots?

We're interested in the relationship between two variables: We want to know if the variation is coordinated.

- Dependent variable:
 - data we are interested in explaining
 - •Y-axis
 - response variable

We're interested in the relationship between two variables: We want to know if the variation is coordinated.

- Independent variable:
 - data used to describe variation in dependent variable
 - •X-axis
 - Explanatory or predictor variable

We're interested in the relationship between two variables: We want to know if the variation is coordinated.

- Dependent variable:
 - data we are interested in explaining
 - Y-axis
 - response variable
- Independent variable:
 - data used to describe variation in dependent variable
 - X-axis
 - explanatory or predictor variable
- Dealing with *pairs* of values (x, y)!

Correlations: Sign

What is the sign of the correlation?

Lets play a game! http://www.istics.net/Correlations

http://www.istics.net/Correlations

Intro Quant Ecology

http://www.istics.net/Correlations

Variance and Covariance

Remember the standard deviation?

• It is a great way to quantify the amount of variability in a collection of numbers! It is the square root of the **variance**.

Variance

- Measures the amount of variation in a collection of numbers (just like sd).
- Normalized by the sample size: "Mean squared deviation"
- Variance calculation uses a sum of squares term:

$$Var(x) = \frac{1}{n} \sum_{i}^{n} (x_i - \bar{x})^2$$

 Variance is univariate and always positive (it's those squared terms!), but it's in weird units...

Variance and Covariance

Covariance

 Quantifies the amount of coordinated variation in two variables. It is a bivariate statistic.

$$\operatorname{Cov}(x,y) = \frac{1}{n} \sum_{i}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- No squared term... can range from –infinity to infinity
- The covariance of a variable with itself is just the variance.
- Positive covariance means that as x values increase, the corresponding y value tends to increase. Vice versa for negative covariance.
- Zero covariance means there is no coordinated variation.

Variance, Covariance, and Correlation

- Covariance quantifies the amount of coordinated variation in **two** variables. It is a bivariate statistic.
- Variance quantifies the amount of variation in a single variable. It is a univariate statistic.
- Correlation is a **normalized** version of covariance. It's normalized to fall into the range -1 to 1.
 - The calculation uses the covariance of both variables, as well as the individual variances of each variable.

Correlations: Quantification and Significance

We need a way to

- quantify correlations/relationships
- assess whether correlations/relationships are significant
- What might such a test look like?
- We've got two variables: x, y
- How have we compared two groups of numbers?
- Non-parametric test
- Parametric test

Correlations: Spearman Correlation

We need a *test*!

- 1.Spearman's rank test (r_s) nonparametric
 - determines the strength of the link between 2 samples
 - data do not have to be normally distributed
 - relationship does not have to be linear
 - but still exhibits a monotonic (not u- or n-shaped) positive or negative trend
 - use the *ranks* of values
 - correlation strength ranges from -1 to 1
 - -1: perfect *negative* correlation
 - 1: perfect *positive* correlation
 - 0: no correlation

Correlations: Pearson Correlation

We need a *test*!

2. Pearson's product moment (r) - parametric

- determines the strength of the link between 2 samples
- data *must be* normally distributed
- the relationship *must be* linear
 - positive of negative trend
 - monotonic: not u- or n-shaped
- uses actual values
- correlation strength ranges from -1 to 1
 - -1: perfect *negative* correlation
 - 1: perfect *positive* correlation
 - 0: no correlation

Correlations: r_s and r_p

Spearman's rank test (rs)

determine the strength of the link between 2 samples

- data do not have to be normally distributed
- trend does not have to be linear
- uses the ranks of values

determine the strength of the link between 2 samples

Pearson's rank test (rs)

- data must be normally distributed
- trend must be linear
- uses the actual data values

Correlations: r_s and r_p

Both the Spearman and Pearson correlation coefficients are normalized to fall in the range from -1 to 1

- -1: perfect *negative* correlation
- 1: perfect *positive* correlation
- 0: no correlation
- Both correlations only work for monotonic trends.
- The trend must be always increasing or always decreasing

Correlation Coefficients

We like correlation coefficients because we can interpret them easily (compared to variances, covariances, etc.).

Example: the Mayfly data

Mayflies have aquatic larvae that develop in fast-moving streams.

Thom Quine / CC BY https://creativecommons.org/licenses/by/2.0

Spring 2023

Example: the Mayfly data

Intro Quant Ecology

Spearman's rank test (r_s) - the hypothesis

Before conducting any statistical test, we need to state the hypotheses!

Spearman's rank test (r_s) - the hypothesis

Before conducting any statistical test, we need to state the hypotheses!

• H0 (the null hypothesis): There is no correlation between stream speed and mayfly abundance

• H1 (the alternative hypothesis): There is a positive correlation between stream speed and mayfly abundance

$$Rr_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

 Software (Excel and R) will do the math for us, BUT we should be aware of what's going on!

V1	Speed	Abundance
1	2	6
2	3	3
3	5	5
4	9	23
5	14	16
6	24	12
7	29	48
8	34	43

$$Rr_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

• First, calculate the *ranks* of the values: speed

V1	Speed	Abundance	Speed.rank
1	2	6	1
2	3	3	2
3	5	5	3
4	9	23	4
5	14	16	5
6	24	12	6
7	29	48	7
8	34	43	8

$$Rr_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

• First, calculate the *ranks* of the values: abundance

V1	Speed	Abundance	Speed.rank	Abundance.rank
1	2	6	1	3
2	3	3	2	1
3	5	5	3	2
4	9	23	4	6
5	14	16	5	5
6	24	12	6	4
7	29	48	7	8
8	34	43	8	7

$$Rr_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

• Then, calculate the *difference* in ranks: D

V1	Speed	Abundance	Speed.rank	Abundance.rank	Diff
1	2	6	1	3	$\overline{2}$
2	3	3	2	1	-1
3	5	5	3	2	-1
4	9	23	4	6	2
5	14	16	5	5	0
6	24	12	6	4	-2
7	29	48	7	8	1
8	34	43	8	7	-1

$$Rr_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

- Then, square the *difference* in ranks: D^2
 - Why do we like to square things?
 - Do squared terms usually go with measures of center, or spread?

171	C	A 1	Cara da a cal		D:ff	D:ff and
V 1	Speed	Abundance	Speed.rank	Abundance.rank	Diπ	Diff.sq
1	2	6	1	3	2	4
2	3	3	2	1	-1	1
3	5	5	3	2	-1	1
4	9	23	4	6	2	4
5	14	16	5	5	0	0
6	24	12	6	4	-2	4
7	29	48	7	8	1	1
8	34	43	8	7	-1	1

$$Rr_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

- Now we have all the pieces:
- n : number of observations
- *D* : difference in ranks
- D^2 : differences squared

V1	Speed	Abundance	Speed.rank	Abundance.rank	Diff	Diff.sq
1	2	6	1	3	2	4
2	3	3	2	1	-1	1
3	5	5	3	2	-1	1
4	9	23	4	6	2	4
5	14	16	5	5	0	0
6	24	12	6	4	-2	4
7	29	48	7	8	1	1
8	34	43	8	7	-1	1

$$Rr_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

• The key part of the formula is: $\frac{6 \times \sum D^2}{n(n^2 - 1)}$

 This term takes on values from 0 to 2, such that R can take on values from -1 to 1.

$\overline{\mathrm{V1}}$	Speed	Abundance	Speed.rank	Abundance.rank	Diff	Diff.sq
1	2	6	1	3	2	4
2	3	3	2	1	-1	1
3	5	5	3	2	-1	1
4	9	23	4	6	2	4
5	14	16	5	5	0	0
6	24	12	6	4	-2	4
7	29	48	7	8	1	1
8	34	43	8	7	-1	1

$$\frac{6 \times \sum D^2}{n(n^2 - 1)}$$

- The 6 and $n(n^2 1)$ parts of the formula are **normalizing terms**.
- The normalizing terms ensure the value of this term is constrained to the range 0 – 2.

V1	Speed	Abundance	Speed.rank	Abundance.rank	Diff	Diff.sq
1	2	6	1	3	2	4
2	3	3	2	1	-1	1
3	5	5	3	2	-1	1
4	9	23	4	6	2	4
5	14	16	5	5	0	0
6	24	12	6	4	-2	4
7	29	48	7	8	1	1
8	34	43	8	7	-1	1

We've now encountered the normalization idea a few times:

- Calculating standard deviation: we divide by the sample size
- Sums of squares in ANOVA.
- Normalizing constants of probability distribution functions. We haven't worked with these directly, but they are there!

Normal Distribution PDF

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

Normalizing constant. Ensures that the indefinite integral has a value of 1.0.

$$\frac{6 \times \sum D^2}{n(n^2 - 1)}$$

- If ranks are all similar, the D² terms will all be small (or 0 for perfect for correlation).
- This overall term is then closer to zero, making R close to 1 (positive correlation)

V1	Speed	Abundance	Speed.rank	Abundance.rank	Diff	Diff.sq
1	2	6	1	3	2	4
2	3	3	2	1	-1	1
3	5	5	3	2	-1	1
4	9	23	4	6	2	4
5	14	16	5	5	0	0
6	24	12	6	4	-2	4
7	29	48	7	8	1	1
8	34	43	8	7	-1	1

$$\frac{6 \times \sum D^2}{n(n^2 - 1)}$$

- If ranks are all very dissimilar, all the D² terms will all be large.
- This overall term is then closer to 2 making R closer to -1

V1	Speed	Abundance	Speed.rank	Abundance.rank	Diff	Diff.sq
1	2	6	1	3	2	4
2	3	3	2	1	-1	1
3	5	5	3	2	-1	1
4	9	23	4	6	2	4
5	14	16	5	5	0	0
6	24	12	6	4	-2	4
7	29	48	7	8	1	1
8	34	43	8	7	-1	1

$$\frac{6 \times \sum D^2}{n(n^2 - 1)}$$

- If ranks are all random, the values of the D² terms will be a mix of large and small.
- This overall term is then closer to 1 making R closer to 0 (no correlation).

V1	Speed	Abundance	Speed.rank	Abundance.rank	Diff	Diff.sq
1	2	6	1	3	2	4
2	3	3	2	1	-1	1
3	5	5	3	2	-1	1
4	9	23	4	6	2	4
5	14	16	5	5	0	0
6	24	12	6	4	-2	4
7	29	48	7	8	1	1
8	34	43	8	7	-1	1

Spearman's rank test in R

Now that we've seen the how the formula works, we'll let R take care of the calculations:

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

R general syntax:

• Coefficient only:

cor(var1, var2, method='spearman')

• Coefficient *and* significance test R:

```
cor.test(var1, var2, method='spearman')
```

Spearman's rank correlation in R

R syntax with mayfly data			
 Coefficient only: 	$\overline{\mathrm{V1}}$	Speed	Abundance
cor(· · ·	opeea	
mayfly\$Speed,	1	2	6
mayfly\$Abundance,	2	3	3
<pre>method='spearman')</pre>	3	5	5
[1] 0.8095238	4	9	23
	5	14	16
	6	24	12
	7	29	48
	8	34	43

Spearman's rank test in R

```
R syntax with mayfly data: Coefficient and significance test
```

```
cor.test(
   mayfly$Speed,
   mayfly$Abundance,
   method='spearman')
```

Spearman's rank correlation rho

```
data: mayfly$Speed and mayfly$Abundance
S = 16, p-value = 0.02178
alternative hypothesis: true rho is not equal to 0
sample estimates:
    rho
0.8095238
```

Mayfly Data: Fitting a Linear Model

- Remember that the Spearman correlation coefficient doesn't require the trend to be linear.
- However... When a relationship is linear, we can use a more powerful correlation: the Pearson Correlation Coefficient.

Pearson Correlation

Pearson correlation is based on some parametric assumptions (having to do with the individual distributions of x and y).

It also assumes the relationship between x and y is linear.

Calculation uses covariance and variance terms:

$$r(x,y) = \frac{Cov(x,y)}{Var(x) \times Var(y)}$$

[You don't need to memorize the formula!]

Correlation in R

R general syntax:

• Coefficient only:

cor(var1, var2, method = "pearson")

• Coefficient *and* significance test

cor.test(var1, var2, method = "pearson")

Pearson's product moment in R

 Coefficient only: 			
cor(V1	Speed	Abundance
mayfly\$Speed,	1	2	6
mayfly\$Abundance,	2	3	3
<pre>method='pearson')</pre>	3	5	5
[1] 0 8441408	4	9	23
	5	14	16
	6	24	12
	7	29	48

Intro Quant Ecology

R syntax with mayfly data

Pearson's product moment in R

```
R syntax with mayfly data: Coefficient and significance test
cor.test(mayfly$Speed, mayfly$Abundance,method='pearson')
```

```
Pearson's product-moment correlation
```

Mayfly conclusions

Spearman's rank correlation coefficient:

- $r_s = 0.73$:
- the null hypothesis: no correlation
- the alternative hypothesis is?

Pearson's correlation coefficient:

- r = 0.844
- the null hypothesis: no correlation
- the alternative hypothesis is?

Conclusion:

- The values are slightly different, but the qualitative interpretation is same regardless for both!
- there is a statistically significant positive correlation between stream flow and mayfly abundance!

Correlation Summary

- Correlation tells us:
 - Strength of relationship between two continuous variables
- Correlation calculations can be:
 - Non-parametric: Spearman
 - Parametric: Pearson
- Correlation requires:
 - Monotonic function: always increasing or decreasing no humps
- Correlation does not tell us:
 - The magnitude of the relationship. For this we need a regression model!
 - NOTE: your book presents the slope (m) and correlation coefficient (r) together in the ch.
 8; they give us complementary information. We'll look at slope coefficients in detail when we talk about regression.

Linking Data: Associations

Contingency Tables and Chi-square Tests

Links: Numerical and Categorical Data

Numerical Data	Categorical Data
 We've seen one way to quantify the relationship between two numeric variables: correlation coefficients: Pearson – for linear relationships Spearman – for monotonic relationships We'll be delving into another way to quantify these relationships: linear regression. 	 Categorical data often comes in the form of counts. For example, how many female penguins were observed on Dream Island. We can arrange counts of categorical data observations into a table

Contingency Tables

- When observations have two categorical variables, we can arrange them in a table of counts.
- For example, we can make a table of how many penguins of each species were found on each of the islands.
- We could also make a table of how many individuals of each sex were on each island.

Adelie Chinstr Gentoo	Bisco 2 ap 12	be Dream 4 56 0 68 24 0	Torgersen 52 0 0
female male	Biscoe 80 83	Dream 61 62	Torgersen 24 23

Contingency Tables: Visualizing Proportions

- We can visualize individual rows or columns of a contingency table using barplots.
- In this table, the proportions look similar for male and female penguins

BiscoeDreamTorgersenfemale806124male836223

Contingency table: visualizing rows

• Here's a portion of the invertebrate table from your book:

	Upper	Lower	Stem
Aphid	230	175	321
Bug	34	31	35
Beetle	72	23	101

- The proportions for the rows look less similar for this table.
- Squint your eyes and look at the barplots in each row. The patterns are different!

Contingency table: visualizing columns

- Here's a portion of the invertebrate table from your book:
- We can also look at barplots of the columns

	Upper	Lower	Stem
Aphid	230	175	321
Bug	34	31	35
Beetle	72	23	101

- Graphical exploration is a first step, but we need a test....
- The chi-square test helps us determine if there are significant differences in the proportions of different categories in rows (or columns) of a contingency table.
- Do you think the proportions are significantly different?

- Do you think the proportions are significantly different?
- Let's conduct a chisquare test in R to find out!

- Do you think the proportions are significantly different?
- Let's conduct a chisquare test in R to find out!

What is the value of the test statistic? What is the p-value? Are the proportions different?

Pearson's Chi-squared test

data: pen_table X-squared = 0.057599, df = 2, p-value = 0.9716

- Do you think the proportions are significantly different?
- Let's conduct a chisquare test in R to find out!

- Do you think the proportions are significantly different?
- Let's conduct a chisquare test in R to find out!

What is the value of the test statistic? What is the p-value? Are the proportions different?

Pearson's Chi-squared test

data: invert_table
X-squared = 19.621, df = 4, p-value = 0.0005931

Preview of Linear Models

Correlation and Regression

- Correlation tells us if there is a relationship, and how strong the relationship is.
 - This is not the same as the magnitude.
 - Suppose we want to know: how many units does the response variable change for a 1-unit change in the predictor variable? Correlation doesn't help with that!
- The slope of a best-fit line is the magnitude of a linear relationship

Linear equation in R

Remember the parameters of the equation of a line:

- Slope
- Intercept
- To calculate the slope and the intercept of the best fit line:
- use a linear model
- in R use the lm() function: lm(respnse ~ explanatory)

Linear equation in R

To calculate the slope and the intercept of the best fit line:

- use a *linear model*
- in R use the lm() function: lm(respnse ~ predictor)

```
lm(mayfly$Abundance ~ mayfly$Speed)
```

```
Call:
```

lm(formula = mayfly\$Abundance ~ mayfly\$Speed)

```
Coefficients:
(Intercept) mayfly$Speed
1.867 1.176
```

Linear model in R

To calculate the slope and the intercept of the best fit line:

- use a *linear model*
- in R use the lm() function: lm(respnse ~ predictor)
- Save your model object to an R variable:

 $fit_mayfly = lm($

Abundance ~ mayfly, data = mayfly)

Note the formula notation with data argument

Linear equation

To calculate the slope and the intercept of the best fit line:

 You can get lots of information about a fitted model object using summary(fit_mayfly)

```
lm(formula = mayfly$Abundance ~ mayfly$Speed)
Residuals:
   Min
            10 Median
                            30
                                   Max
-18.080 -2.481 -0.580 3.975 12.042
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
              1.8667
                         5.7912
                                  0.322 0.75813
(Intercept)
                         0.3048 3.857 0.00839 **
mayfly$Speed
              1.1756
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' ' 1
Residual standard error: 10.05 on 6 degrees of freedom
Multiple R-squared: 0.71, Adjusted R-squared: 0.66
F-statistic: 14.87 on 1 and 6 DF, p-value: 0.008393
```