Intro to Quantitative Ecology UMass Amherst – Michael France Nelson

Deck 6: Inferential Statistics and Differences Between Two Groups

If you're feeling stuck, come to office hours!

Schedule

Mike

- Mondays 3:00 4:30
- By appt.

Ana

- Fridays 4:00 5:00
- By appt.

What types of graphs do we know for plotting differences?

Good choices for plotting differences among groups are:

- Conditional Boxplots
- Barplots*
- Multi-series density plots or histograms*
- We'll focus on boxplots in this course. They illustrate differences better than barplots and they are easier to code than multi-series histograms/density plots.

- Graphs are powerful tools that provide insight and understanding of the patterns and relationships in the data.
- Graphs alone don't give us the complete answer. We need to quantify the relationships we see in our plots.
- What other tools do we have to support our conclusions?

- How can we **quantify** our evidence for relationships?
- Are differences between groups *significant*?
- Are differences between groups *meaningful*?

- How can we **quantify** our evidence for relationships?
- Are associations between 2 variables *significant*?
- Are associations between 2 variables *meaningful*?

- Statistics is the tool we use to formally answer these questions!
- Differences *are/are not* significant?
- Associations are/are not significant?

Wait a second... what do we mean when we say significant?

Hypotheses

Frequentist Statistics: Hypothesis Testing

- Frequentist paradigm ideas:
 - Population is infinite, parameters are unknowable
 - Samples are finite, we use sample statistics to make educated guesses about population parameters.
- Hypothesis testing is the heart of frequentist statistics.
 - Quantification of the evidence that something 'interesting' is happening in our data.
- Frequentist statistical hypotheses
 - Null hypothesis: There is nothing interesting happening: no associations, differences, or correlations
 - Alternative hypothesis: There is an association, difference, or correlation. This is what we think is actually happening!

Frequentist Statistics: Hypothesis Testing

- We can quantify **relationships** among variables in our data (associations, correlations, differences).
- We can characterize the **uncertainty** or noise in our data.
- Hypothesis testing is an objective way to quantify the evidence for any patterns we observe.
- Much more later!

Let's examine some plots to gain intuition:

Lake Trout

- Scenario: We want to know whether the size of lake trout (*Salvelinus namaycush*) are larger in some Massachusetts lakes than others.
- We have collected trout data for from Wyola Lake and the Quabbin Reservoir in Western Mass.

Lake Trout: Salvelinus namaycush

- Are differences between lakes *significant*?
- Are differences between lakes *meaningful*?

- Are differences between lakes *significant*?
- Are differences between lakes *meaningful*?

- Are differences between lakes *significant*?
- Are differences between lakes *meaningful*?

- Are differences between lakes *significant*?
- Are differences between lakes *meaningful*?

Tests for differences

Often, we want to know if the *means* or *medians* of two or more groups are different.

• Are the differences *statistically significant*?

To determine the significance of differences between **two groups**, we need a statistical test:

- t-test
- U-test

Tests for differences: intuition

To build intuition about testing for differences between two groups, let's consider:

• What information would we need to know?

- What kinds of evidence would support our conclusion?
- How do we define *different*?

Tests for differences: intuition

To build intuition about testing for differences between two groups, let's consider:

- What information would we need to know?
 - Center and spread of each group?
 - Difference in means?
- What kinds of evidence would support our conclusion?
 - Large difference in means?
- How do we define *different*?

Intuition: Large Difference In Means

Are the differences significant?

- Large difference in means.
- Very little overlap in the distributions.
- You observed an individual that weighed 50 grams, which group does it belong to?
- Difference is probably significant!

22

- Small difference in means.
- Distributions are mostly overlapping.
- You observed an individual that weighed 50 grams, which group does it belong to?
- Difference is probably not significant!

- Small-ish difference in means, but distributions are narrow.
- Distributions are slightly overlapping.
- You observed an individual that weighed 50 grams, which group does it belong to?
- Difference is probably significant!

Purpose:

• compare the means of two samples (say *a* and *b*)

Assumptions:

- both samples normally distributed
- both samples have equal variances

Purpose:

• compare the means of two samples (say *a* and *b*)

Assumptions:

- both samples normally distributed
- both samples have equal variances (we can work around this one)

$$t = \frac{|\bar{x}_a - \bar{x}_b|}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}$$

- *t* :the *t*-statistic
- \bar{x} :sample mean
- *s*: sample standard deviation
- *n*: sample size

Purpose:

• compare the means of two samples (say *a* and *b*)

Assumptions:

- both samples normally distributed
- both samples have equal variances

$$\bar{z} = \frac{|\bar{x}_a - \bar{x}_b|}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}$$

• if $|\bar{x}_a - \bar{x}_b|$ is large, then t is large • if $\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}$ is large, then t is small

Purpose:

• compare the means of two samples (say *a* and *b*)

Assumptions:

- both samples normally distributed
- both samples have equal variances

$$t = \frac{|\bar{x}_a - \bar{x}_b|}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}$$

• if $|\bar{x}_a - \bar{x}_b|$ is large, then t is • if $\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}$ is large, then t is

What if there are more than 2 groups???

- T-tests can only handle one or two groups.
- Analysis of Variance (ANOVA) works for 3 or more groups.
 - Conceptually similar to t-test (it tests for differences among groups).
 - How do you know which group or groups are different? This question is more complicated with 3 groups!
 - P-value interpretation is similar.

Multi-Panel Plots and Formula Notation

But first, some background!

R's Formula Notation

- Formula notation: a powerful syntax that reflects our model, or plot, structure!
- The syntax is similar to how we express mathematical functions:
 - Response variable on the left.
 - Explanatory variables on the right.
- The tilde character: ~
 - Like the equals sign in a function.
 - Symbolizes that we propose a relationship between the variable on the left (the response variable) and the variables on the right (the predictors).

penguins\$flipper_length_mm ~ penguins\$body_mass_g

Mathematical Formulas	Formulas in R
Recall the equation of a line: y = mx + b We can think about this in terms of the penguins: Flipper length = m*(body mass) + (a constant)	We could write the flipper/body mass relationship using the formula notation in R using the tilde symbol. Read the tilde as: • "y explained by x" • "y in terms of x"

Formula example

```
plot(
 penguins$flipper_length_mm ~ penguins$body_mass_g,
 main = "Body mass and flipper length",
 xlab = "body mass (g)",
 ylab = "flipper length (mm)"
      Alternate syntax using the data argument:
  plot(
    flipper_length_mm ~ body_mass_g,
    data = penguins,
    main = "Body mass and flipper length",
    xlab = "body mass (g)",
    ylab = "flipper length (mm)"
```


•Note the use of the par() function. See the example in the assignment walkthrough.

The t-distribution has fatter tails than the normal distribution.

The t-distribution has more uncertainty because we're estimating from data in a sample (rather than a population).

The t-distribution gets closer to the normal distribution with more observations.

The t-distribution gets closer to the normal distribution with more observations.

This should make intuitive sense since larger samples are more likely to be representative of the population!

The t-distribution is nearly identical to the normal distribution with 30 df.

Understanding the *t*-distribution:

- whether a difference is significant depends on:
- the *t-statistic*
- degrees-of-freedom ($n_a 1 + n_b 1$)
- larger *t-statistics* more likely to be significant.

Large sample sizes have smaller critical t-values.

- Degrees of freedom is related to the sample size.
- But note the diminishing returns as you increase n.

95% Critical t-value for different degrees of freedom

p-value is the probability of observing a *t-statistic* as extreme as we did by chance *if the null hypothesis were true*.

- if *p*-value is lower than significance level (e.g. 5%):
 - difference is significant
 - reject the null hypothesis
- we don't *accept* the alternative hypothesis
 - But we can say we have good evidence in favor of the alternative over the null.
- P-values are always interpreted in reference to the null hypothesis

Which *t-test*?

- standard *t-test*
- compare two independent samples
- both normally distributed
- equal (similar) variances
- samples sizes can be the same or not

Differences: t-test Formula Revisited

Components of the t-test

$$t = \frac{|\bar{x}_a - \bar{x}_b|}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}$$

- *t* :the *t*-statistic
- x_{a}^{-} :sample mean, group a
- s_a^2 : sample variance deviation, group a
- *n_a*: sample size, group a

T-test intuition

Numerator	Denominator
	 Denominator is related to the sample dispersion
 Numerator is the difference in means If numerator is large, t will be large 	• If groups have lots of dispersion, i.e. the numbers are very variable, the denominator will be large.
	 If denominator is large, t will be small.

P-value intuition

The p-value can be hard to understand, we'll revisit its meaning many times. Some ways to think about the p-value:

- A low p-value (0.05 or lower) means we have observed something significant, or perhaps interesting.
- If you observe an unlabeled individual, how hard is it to decide which group it goes in? A low p-value means that it is easy to guess.
- How much overlap is there between the distributions of the group? Minimal overlap corresponds to low p-values.
- False positive rate: What is the probability that the pattern we observed is due to chance (i.e. sampling error)?
- Null hypothesis: A low p-value means we can reject the null hypothesis.

*Note, all of these (except the last two) are not technical definitions, they are meant to build intuition.

Large sample sizes have smaller critical t-values.

- Degrees of freedom is related to the sample size.
- But note the diminishing returns as you increase
 n.
- T-tests on the following slides used 30 d.f.
 - Requires a t-value of around 2 to be significant

95% Critical t-value for different degrees of freedom

Intuition: Large Difference In Means

- Very large numerator (difference in means)
- Moderate denominator (sample variance)
- Large t-value

Intuition: Large Difference In Means

- Large difference in means
 - Big separation between group distributions
- Dispersion is moderate
- T is large (and negative)
- Very low p-value

- Small difference in means.
- Dispersion is moderate
- Lots of overlap in the distributions
- T is small (and negative)
- P-value of 0.17 is not significant.
- What is the null hypothesis?

- Small difference in means.
- Dispersion is small
- High of overlap in the distributions
- T is small (and negative)
- P-value of 0.03 is significant.
- What is the null hypothesis?

- Moderate difference in means.
- Dispersion is small
- Small of overlap in the distributions
- T is small (and negative)
- Very low p-value is highly significant.
- What is the null hypothesis?

- Small-ish difference in means, but distributions are narrow.
- Distributions are slightly overlapping.
- You observed an individual that weighed 50 grams, which group does it belong to?
- Difference is probably significant!

Differences: paired t-test

Sometimes samples are meaningfully paired

- compare pairs of samples: test is on the *mean difference*, not the mean values
- e.g., before-after
- e.g., north-south
- e.g., left-right
- Both samples on the same physical structure (like a target)
- Assumptions (as usual!)
 - Both normally distributed
 - Equal (similar) variances
 - Samples sizes *must* be the same. Why?

Differences: paired t-test

Which *t-test*?

- paired *t*-test
- compare pairs of samples
- both normally distributed
- equal (similar) variances
- samples sizes are _____?

$$t = \frac{\bar{D}}{\sqrt{\frac{s_D^2}{n}}}$$

- *t*: the *t*-statistic
- \overline{D} : mean of the *differences*
- *s*: standard deviation of the *differences*
- *n*: number of *paired* samples

Differences: When might the t-test be inappropriate?

Those pesky assumptions!

T-test Assumptions

- The t-test is a parametric statistical test.
- The theoretical justification of the t-test relies on certain assumptions:
 - Measurements are [approximately] normally distributed within groups.
 - The dispersion is approximately equal in the groups.
 - All measurements are independent.
 - Others, but these are the ones we'll focus on for now!
- We can test these assumptions: we'll focus on the normality assumption.

- compare two samples
- one or both *not* normally distributed
- based on *median*, *range*, and *ranks*
- rank all values as one sample, calculate group rank sums R
- calculate a *U*-value, a measure of overlap

- compare two samples
- both or differences not normally distributed
- based on *median, range,* and *ranks*
- rank all values as one sample, calculate group rank sums R
- calculate a *U*-value, a measure of overlap

$$U_{a} = n_{a} \times n_{b} + \frac{n_{a}(n_{a} + 1)}{n_{b}(n_{b}^{2} + 1)} - R_{a}$$
$$U_{b} = n_{b} \times n_{a} + \frac{n_{b}(n_{b}^{2} + 1)}{2} - R_{b}$$

- n_a : number of samples in sample a
- n_b : number of samples in sample b
- R_a : sum of the ranks of values in a
- R_b : sum of the ranks of values in b

- compare two samples
- both or differences not normally distributed
- based on *median, range,* and *ranks*
- rank all values as one sample, calculate group rank sums R
- calculate a *U*-value, a measure of overlap

$$U_{a} = n_{a} \times n_{b} + \frac{n_{a}(n_{a} + 1)}{n_{b}(n_{b}^{2} + 1)} - R_{a}$$
$$U_{b} = n_{b} \times n_{a} + \frac{n_{b}(n_{b}^{2} + 1)}{2} - R_{b}$$

- smallest is used to find the *p*-value
- unlike the t-statistic, lower U-values are more likely to be significant

Differences: Wilcoxon matched-pairs test

- both or differences *not* normally distributed
- based on ranked *differences*
- first calculate the differences
- second rank the differences
- 0's not ranked
- sum and compare +ve and -ve ranks

$$W^+ = \sum R^+ \\ W^- = \sum R^-$$

- W^+ : the Wilcoxon test statistic for positive differences
- W^+ : the Wilcoxon test statistic for negative differences
- R^+ : the sum of the ranks of positive differences
- R^+ : the sum of the ranks of negative differences

Differences: Wilcoxon matched-pairs test

- pairs or differences *not* normally distributed
- based on ranked *differences*
- first calculate the differences
- second rank the differences
- sum and compare +ve and -ve ranks

$$W^+ = \sum R^+ W^- = \sum R^-$$

- smallest is used to find the *p*-value
- lower *W*-values are more likely to be significant

It's easy to conduct a t-test in R, but first we need to specify our hypotheses and check that our data meet the required assumptions.

Two-sample test in R procedure:

- 1. Create a conditional boxplot to explore your data
 - 1. Using the formula notation is the easiest way.
- 2. Check the assumption of normality with shapiro.test()
 - 1. The null hypothesis is that the data are normal.
- 3. Decide which test to use
- 4. Conduct the test with t.test() or wilcox.test() and interpret the results.
 - 1. The null hypothesis is that there is no difference between groups.

Conditional Boxplot

Syntax	Plot
 Note the formula notation: 	 What do you notice? Body mass by sex
<pre>boxplot(body_mass_g ~ sex, data = penguins, main = "Body mass by sex", ylab = "body mass (g)")</pre>	(b) see where the set of the set

Check Assumptions: Shapiro test in R

Syntax	Results
<pre>dat_male = subset(penguins, sex == "male") dat_female = subset(penguins, sex == "female") # Shapiro test on male penguins shapiro.test(dat_male\$body_mass_g)</pre>	<pre>> shapiro.test(+ dat_male\$body_mass_g +) Shapiro-Wilk normality test data: dat_male\$body_mass_g W = 0.92504, p-value = 1.227e-07 > shapiro.test(+ dat_female\$body_mass_g +)</pre>
<pre># Shapiro test on male penguins shapiro.test(dat_female\$body_mass_g)</pre>	Shapiro-Wilk normality test data: dat_female\$body_mass_g W = 0.91931, p-value = 6.155e-08

- What's the Shapiro test null hypothesis?
- Do we have evidence for or against normality?
- Can we use a t-test?

Which test?

- What's the Shapiro test null hypothesis?
 - That the data are normal
- Do we have evidence for or against normality?
 - Low p-value is evidence that data are non-normal
- Can we use a t-test?
 - No, our data are too non-normal
 - We can use a U-test
 - The syntax is nearly identical to that of the t.test() function.

The U-Test

Syntax	Results
 Note the formula notation: wilcox.test(body_mass_g ~ sex, data - populing 	Wilcoxon rank sum test with continuity correction data: body_mass_g by sex W = 6874.5, p-value = 1.813e-15 alternative hypothesis: true location shift is not equal to 0
)	What's the p-value? Is there evidence for a true difference?