### Intro to Quantitative Ecology UMass Amherst – Michael France Nelson

Deck 4: Numerical Data Exploration



#### Announcements

- Chapter 4 has a lot of important information.
  - We will move through it quickly, but we are going to revisit and re-use concepts throughout the rest of the course.

# Numerical Data Exploration: Model Thinking

- We may not realize it, but we are engaging in model building when we summarize data.
- Some of our assumptions include:
  - Numerical and graphical summaries and exploration are a valid way to characterize data. (they usually are)
  - We think (or hope) our data are representative.
  - We think that *statistics* like mean or standard deviation tell us something *meaningful* about our data.

## Numerical Data Exploration: Sample Statistics

What are two general quantities to summarize a collection of numbers?

- Central tendency
- Dispersion

Why do we call these *statistics*?

#### Population

- A large collection of sampling units
- We usually can't observe the entire population
- Properties of the population are called population parameters

#### Sample

- A subset of the population
- We can observe the entire sample
- Properties of the sample are called sample statistics.

#### Some tools and statistics:

- 5-number summary
- central tendency: mean, median, mode
- spread/dispersion: standard deviation, range
- min, max
- skew. We don't often formally quantify this, but we frequently consider it *graphically*.
- tests for normality, like shapiro.test() in R

#### Center and Spread

| Center | Spread |
|--------|--------|
|        |        |

- A measure of the characteristic value of a collection of numbers.
- What number are we most likely to observe if we choose one randomly?
- Mean
- Median
- Mode

- A measure of the dispersion.
- How variable are the values in a collection of numbers.
- Standard deviation
- Range (minimum and maximum)
- Interquartile range

#### Distributions

#### What is the Uniform Distribution?

| Normal                                                                            | Uniform                                                     |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------|
| <ul> <li>Hump-shaped</li> </ul>                                                   |                                                             |
| <ul> <li>Symmetrical</li> </ul>                                                   | <ul> <li>Flat-shaped</li> </ul>                             |
| <ul> <li>Two parameters: mean and standard</li> </ul>                             | <ul> <li>Symmetrical</li> </ul>                             |
| deviation                                                                         | <ul> <li>Two parameters: min and max</li> </ul>             |
| <ul> <li>Most values are near the mean</li> </ul>                                 | <ul> <li>Values are evenly distributed: no value</li> </ul> |
| <ul> <li>The standard deviation determines<br/>the width of the normal</li> </ul> | is more or less likely than any other                       |

Your book greatly simplifies the concept of distributions...

• Gardener calls the Normal distribution *the parametric distribution*.

Look at table 4.11:

- Do you really think there are only two distributions?
- Hint: there are hundreds of named distributions...



#### Ask yourself:

- Does the Normal work for binary (true/false, presence/absence) outcomes?
- Does the Normal work for categorical data?
- Does the Normal work for count data?
- There are hundreds of *parametric distributions* that can model these scenarios (and others).

# Some Other Important Distributions

- Bernoulli and binomial:
  - These model the number of *successes*.
  - Think of flipping a coin one or more times and counting the number of *heads* or the number of plots in which a species is present or absent.
- Poisson: modeling count data
- Exponential and geometric: modeling skewed data in which small measurements are most common.
- T-distribution: a small-sample version of the Normal.
- Chi Square and F: sums and quotients of multiple normal distributions. Used for lots of statistical tests.

# Histograms

#### Graphical Exploration: Preview – The Histogram



#### Graphical Exploration: Preview – The Histogram

- Histograms help us understand the distribution of a collection of numbers.
  - They are similar to the plot of a distribution function (we'll learn about these later)



#### How To Read A Histogram



# Random Numbers

#### Random Numbers in R

- What are random numbers?
- Random numbers generated by a computer are actually pseudorandom.
- Can our computers really generate randomness?



### Random Numbers in R

What is pseudorandom?

- Sequences of numbers that match the statistical properties of randomness.
- Generated by numerical algorithms, initialized using seed numbers.
  - set.seed() in R



#### Distributions: Preview – 2 Important Distributions



# Sampling From Distributions: The r Functions

| Normal Distribution                                                                                                                | Uniform Distribution                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>rnorm(     # How many numbers to generate     n = 100,     # The center     mean = 0,     # The dispersion     sd = 1 )</pre> | <pre>runif(     # How many numbers to generate     n = 100,     # The minimum possible value,     min = 0,     # The maximum possible value     max = 1 )</pre> |

# Sampling From a Vector: sample()

| Syntax Example                                                                                                                                                                                                                                                                                                                                          | Barplot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre># Set the random seed<br/>set.seed(371521)<br/>set.seed(1)<br/>animals = c("eft", "beetle", "dog")<br/># Randomly sample 50 animals<br/>animals_s = sample(<br/>x = animals, size = 50, replace = T)<br/>head(animals_s)<br/>barplot(<br/>table(animals_s),<br/>main = "Uniform Sample Of Animals",<br/>col = adjustcolor("steelblue", 0,3))</pre> | Uniform Sample Of Animals         9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9 |
| cor aujustcoror steerbrue , 0.3/)                                                                                                                                                                                                                                                                                                                       | beetle dog eft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Questions for me?

- General questions?
- R questions?
- R demos?

#### Random Number Generation

- Take 5 minutes to read through the instructions.
- Submit your report at the end of class.
- Be sure to include your names in the report.
- Feel free to shuffle groups!