Deck 5: Global Positioning System

Projections Recap, Practical Exam Info, GPS, Selections vs. Geoprocessing

Intro to GIS – UMass Amherst – Michael F. Nelson

Request Azure Virtual Desktop Now!!!

- Do it!
- <u>Azure Virtual Desktop at UMass Amherst | UMass Amherst | Information Technology | UMass Amherst</u>
- Do not wait, you may find yourself in a serious bind if the lab computers fail during midterm week!
- This is your final warning there will be no extensions granted on the midterm due to lack of virtual desktop access!

Overview

Projections: Recap

Practical Exam Info

Once upon a OneDrive

- Make sure you have file sync turned on when you use WVD!
 - You probably do, but it never hurts to check.
- Check the system tray for OneDrive status

Once upon a OneDrive

Next week is spring break!

- Rest, regroup, and relax as much as possible, and think about your GIS questions!
- Week 6 will be midterm concept review
- Week 7 will be midterm.

Midterm Info

- The midterm will automatically open on Friday June 16th at 12:01 AM, and close on Friday June 23rd at 11:59PM.
- This gives you about 8 days to complete it.

- The Practical is an independent test of your GIS abilities on concepts through lab 5.
- It is not a closed book exam.

- You can use:
 - Your notes and old labs
 - Google/Internet/ESRI Help
 - Discussion with others in the class in public rooms during the lab period

- You can't use:
 - Myself or the TAs
 - We can answer questions about the wording of questions, but not concepts or contents.
 - Private communication with others in the class

Before you Attempt the Midterm

- You should have completed labs 1 - 5.
 - If you aren't comfortable with this material, you won't do well on the midterm!
 - Be in touch right away if you're falling behind, or have timing concerns.

Before you Attempt the Midterm

- So... if you're struggling with completing things, reach out ASAP.
- If you communicate , we can help you!
 - If we don't hear from you, there's not much we can do!

Next lecture is all about the midterm!

• Cue up your questions!

Modeling The Earth's Shape

A very brief review

What is Earth's shape?

From Lumpy Space Potato to Projected Coordinates Abstraction: ellipsoid model

Parameterizing the ellipsoid

Geographic Coordinate System (GCS)

Anchoring the ellipsoid: the datum

From 3D to 2D: projecting

Model Thinking: A useful simplification of the earth's shape?

- Flat*?
- Sphere?
- Ellipsoid?
- Lumpy Space Potato?
- Geoid?

* The earth is not flat.

A Tale of Two Coordinate Systems

Geographic Coordinate System (GCS)

- Spherical coordinates: degrees
 - Problematic because it does not directly relate to physical distance
 - A GIS may not be able to properly calculate distance or area.
 - Some geoprocessing operations require a PCS
- Associated with a particular datum

Projected Coordinate System (PCS)

- Planar coordinates: usually meters, feet, km, or miles
 - Useful for measuring distance or area.
- Derived from a GCS by a mathematical function
- Associated with a particular datum

Time for a stretch break

How should we specify location?

- A map?
- Direction and distance?
- Relative location?
- Absolute location?

Old-school: Celestial Navigation

Old-school: Dead Reckoning

If you know where you are to begin with, you can use only **direction** and **distance** (plus a chart/map) to figure out where you end up.

Old-school: Dead Reckoning

If you know where you are to begin with, you can use **direction** and **distance** to figure out where you end up. Remember rhumb lines and great circles?

Copyright © 2009 Pearson Prentice Hall, Inc.

Old-school: Dead Reckoning

If you know where you are to begin with, you can use **direction** and **distance** to figure out where you end up. Remember rhumb lines and great circles?

A rhumb line (loxodrome) intersects all lines of longitude (meridians) at the same angle.

- You never have to change your compass bearing!
- May be easier to use than a circle path
- Longer than a circle path.

A great (or small) circle path may intersect meridians at different angles.

• Need to constantly update compass bearing

Copyright © 2009 Pearson Prentice Hall, Inc.

Relative Location

- Relative location positions you in relation to another object.
- In this example, we can say that Hawaii is south of Alaska.

Absolute Location

• Absolute locations references some standardized grid or location system, like latitude and longitude along with a datum, like the World Geodetic System.

GPS

The global positioning system allows us to know our absolute location, with reasonable accuracy, anywhere on the planet.

GPS

- Consider imaginary spheres centered on each GPS satellite.
- GPS receiver uses time and speed (of light) to calculate distance to satellite.
- But where are the satellites?

3dtriangulation.jpg Adapted from Quiring 2012, pp. 2

GPS Components

A GPS has 2 main components:

- Almanac: locations of satellites
- Ephemeris: time difference

3dtriangulation.jpg Adapted from Quiring 2012, pp. 2

GPS: Almanac

- But where are the satellites?
- You need to know the locations of at least 4 satellites in the sky to accurately figure out where you are!
- There are usually 6 visible at all times.

3dtriangulation.jpg Adapted from Quiring 2012, pp. 2

GPS

- All electromagnetic radiation (radio waves to x-rays) travel at speed of light (300,000,000 meters/second).
- GPS systems use radio waves to transmit information.

 $http://en.wikipedia.org/wiki/File:GPS_Satellite_NASA_art-iif.jpg$

GPS

Einstein's relativity tells us:

- Speed of light is constant for every observer
- We perceive that time happens 'faster' on the satellites than on Earth's surface.
- We have to adjust ~ 38 microseconds per day

 $http://en.wikipedia.org/wiki/File:GPS_Satellite_NASA_art-iif.jpg$

GPS

• Check out the garmin GPS info page [Link on GitHub].

GPS Ephemeris: Atomic clock time stamp

• Atomic clocks are extremely accurate.

2D Triangulation

- You are 600 miles from Boise.
 What does that tell you?
 - Not much: you could be anywhere on the edge of the circle

2D Triangulation

- You are 600 miles from Boise.
- You are also 600 miles from Tucson.
- Where are you now?
 - 2 possibilities: the points where the circles overlap!

2D Triangulation

- You are 600 miles from Boise.
- You are also 600 miles from Tucson.
- You find out you're also 600 miles from Minneapolis.
- The third circle collapses the possibilities to one!
 - You're in Denver.

A Big Problem!

• Where am I now?

A Big Problem!

- The satellite clocks are extremely accurate
- The clock on your GPS unit is not!

Speed of light to the rescue!

- The distance measurements by your unit are proportionally wrong.
- You can shrink your circles until they intersect.

Speed of light to the rescue!

- With GPS, the circles become spheres.
- With 4

 satellites, you
 can correct for
 your unit's
 inaccurate clock

GPS: Almanac and Ephemeris

Almanac

- Positions of satellites in sky
- Provides your GPS with precise locations of satellites

Ephemeris

- Satellites use atomic clocks
- Time stamp of when signal left the satellite
- Your unit compares the time the signal left to when it is received

GPS Issues

- Despite the general reliability of GPS, it is not a perfect system:
- Atmospheric and physical features distort and confuse the GPS signal, while the shape of the planet is also a difficulty.

GPS Issues GPS radio signal can be affected by many factors, including:

- Clouds or other atmospheric conditions.
 - Speed of light varies in different media.
 - Can vary with temperature of medium
- Proximity to buildings and other structures, and even water.
- Terrain features like mountains.
- Earth's rotation.
- Current satellite configuration.

GPS Issues: Example

- On September 1, 1983, navigational errors cause KAL 007 to stray into prohibited Soviet airspace.
- Soviet MiG-23 interceptors shoot down KAL 007, killing all 269 people aboard.
- President Ronald Reagan orders U.S. military to make GPS system available for civilian use.
- The Downing of Flight 007

GPS Issues: Example II

- May 2, 2000: President Clinton orders U.S. military to cease intentional scrambling of GPS satellite signals used by civilians.
- Effectively improved GPS receiver accuracy by 10x.

GPS History and Applications

Check out Canada GIS

Global Positioning System - History

- **1978:** First GPS Satellite Launch
- **1983:** Reagan announces GPS will be available to civilians
- **1995:** GPS becomes fully operational

Block	Launch Period	Satellite launches				Currently in a shift
		Suc- cess	Fail- ure	In prep- aration	Plan- ned	and healthy
I	1978–1985	10	1	0	0	0
II	1989–1990	9	0	0	0	0
IIA	1990–1997	<mark>1</mark> 9	0	0	0	10
IIR	1997–2004	12	1	0	0	12
IIR-M	2005-2009	8	0	0	0	7
IIF	2010-2011	1	0	11	0	1
IIIA	2014–?	0	0	0	12	0
IIIB		0	0	0	8	0
IIIC		0	0	0	<mark>16</mark>	0
Total		<mark>59</mark>	2	11	36	30

GPS Applications

GPS Applications

• Precision Agriculture

GPS Applications

Deformation and earthquake monitoring

GPS Applications

Announcements

- Thanks for being patient with the asynchronous lecture format from Tuesday! If you haven't already done so, you can watch the Tuesday lecture (broken up into two videos) on Echo360.
- Some of the midterm information in lecture 5b was out of date.
 - The midterm will automatically open on Friday June 16th at 12:01 AM, and close on Friday June 23rd at 11:59PM.
 - This gives you about 8 days to complete it.
- Next Tuesday will also be asynchronous; I have last-minute plans and I'll be in airports on Tuesday. I'll post the recorded lecture before the normal lecture time on Tuesday.

For today

- Review spatial data operations we have met so far (this deck)
- Midterm review (deck 6)

Spatial Data Operations

Selection and Geoprocessing

Two analytical approaches

Selection

- Creates subsets of features
 - By attributes or location
- Does not create new features
- Does not alter the location data of existing features.

Geoprocessing

- Can create subsets of features
 - Based on location
- May create new features
 - E.g. buffers
- May alter existing features
 - ArcMap typically saves the output of geoprocessing to a new layer.

Review: Selection options

- One warning:
- ArcMap will remember your previous choice in the selection method
- If you are trying to create a new selection and nothing happens, check there first

Select By Location	2 X
Select features from one or more target layers based on th relation to the features in the source layer.	neir location in
Selection method:	
select from the currently selected features in	-
Target layer(s):	
Only works if you alreaded have something sele	eady cted!

Thinking about a dead bird...

• Compare selection vs. geoprocessing approaches.

 <u>How many</u> roads are within 2 km of the dead bird?

• <u>What are the names</u> of the roads within 2 km of the dead bird?

- What is the <u>total</u>
 <u>length</u> of roads within
 2 km of the dead bird?
- Should we use a selection or a geoprocessing approach?

- What is the total • length of roads within 2 km of the dead bird?
- Selection doesn't seem • helpful here.

length will be

We need to **alter** the ulletlocation data of some of the selected roads.

- What is the <u>total</u>
 <u>length</u> of roads within
 2 km of the dead bird?
- **Clip** to the rescue!

N Clip	_ 🗆 🗙				
Input Features	A				
roads	- 6				
Clip Features					
deadbird_Buffer	▼ 🖻				
Output Feature Class					
C:\Users\Bethany\Documents\ArcGIS\Default.gdb\roads_Clip					
XY Tolerance (optional)					
Meters					
	T				
OK Cancel Environments	Show Help >>				

- What is the <u>total</u>
 <u>length</u> of roads within
 2 km of the dead bird?
- Clip to the rescue!
- How do we calculate length of the clipped roads?

Common Geoprocessing Operations

Clip and Erase

Clip keeps the info inside the shape

Erase keeps the info outside the — shape

Intersect

Intersect is like a clip (you end up with the inside), except you retain the attributes from <u>BOTH</u> shapefiles

Intersect

Intersect is like a clip (you end up with the inside), except you retain the attributes from <u>BOTH</u> shapefiles

More at the end of the deck.

Buffer and Dissolve

What is the total land area within 5k of all US highways?

Is this a selection or geoprocessing question?

Let's try the default: don't dissolve

Input Features		, Âl	Dissolve Type
Faults	- 2		(optional)
Output Feature Class		:	
C:\Bethany\Teaching\Intro GIS\GIS Labs\temp\faults_buffer.shp	2		Specifies whether a
Distance [value or field] Cinear unit	10 Kilometers	1	dissolve will be performe to remove buffer feature overlap.
O Field		1	
Side Type (optional) FULL End Type (optional) ROUND Dissolve Type (optional) LIST	•	 = 	 NONE—Individual buffer for each feature is maintained, regardless of overlap. This is th default.
NONE ALL LIST THODE_ DEPOLY_ RPOLY_	=		 ALL—Dissolves a the buffers together into a single feature and removes any overlap.
□ KBF_ □ KBF_ID □ DESC	-		 LIST—Dissolves by a given list of fields.

New buffer polygons overlap.

This is probably not what we want...

Г	FID	Shape *	FNODE	TNODE	LPOLY	RPOLY	LENGTH	KBF	KBF ID	DESC
Γ	0	Polygon	1	3	0	0	0.086894	1	4	FAULT
Г	1	Polygon	3	4	0	0	0.090903	2	6	FAULT
ſ	2	Polygon	2	5	0	0	0.057317	3	71	FAULT
F	3	Polygon	10	9	0	0	0.035758	4	75	FAULT
F	4	Polygon	11	10	0	0	0.043352	5	18	FAULT
İ	5	Polygon	5	12	0	0	0.184282	6	20	FAULT
İ-	6	Polygon	12	11	0	0	0.054337	7	23	FAULT
Γ	7	Polygon	11	14	0	0	0.071786	8	78	FAULT
ſ	8	Polygon	15	6	0	0	0.214837	9	35	FAULT
	9	Polygon	5	15	0	0	0.103538	10	36	FAULT
	10	Polygon	16	17	0	0	0.007592	11	42	FAULT
	11	Polygon	17	18	0	0	0.004693	12	44	FAULT
	12	Polygon	20	16	0	0	0.028697	13	47	FAULT
	13	Polygon	18	21	0	0	0.005915	14	48	FAULT
	14	Polygon	22	20	0	0	0.002914	15	50	FAULT
	15	Polygon	24	22	0	0	0.11746	16	64	FAULT
	16	Polygon	7	26	0	0	0.166782	17	70	FAUL1
	17	Polygon	21	27	0	0	0.125936	18	74	FAULT
	18	Polygon	28	24	0	0	0.040082	19	60	FAULT
	19	Polygon	15	31	0	0	0.167683	20	84	FAULT
	20	Polygon	31	30	0	0	0.10373	21	85	FAULT
	21	Polygon	29	32	0	0	0.016344	22	88	FAULT
	22	Polygon	27	33	0	0	0.075022	23	63	FAULT
	23	Polygon	31	38	0	0	0.0536	24	96	FAUL1
	24	Polygon	39	37	0	0	0.010502	25	115	FAULT
	25	Polygon	37	40	0	0	0.051601	26	223	FAULT
	26	Polygon	43	35	0	0	0.045819	27	112	FAULT
	27	Polygon	44	41	0	0	0.018506	28	97	FAULT
	28	Polygon	36	45	0	0	0.052767	29	668	FAULT
Γ	29	Polygon	40	46	0	0	0.038029	30	115	FAULT
	30	Polygon	47	45	0	0	0.078803	31	666	FAULT
	31	Polygon	13	48	0	0	0.350652	32	133	FAULT
	32	Polvaon	34	49	0	0	0.10314	33	134	FAULT

Dissolve all polygons!

Input Features			î	Dissolve Type
Faults			- 🖻	(optional)
Output Feature Class				, , ,
C:\Bethany\Teaching\Intro GIS\GIS Labs	\temp\faults_buffer.shp		🗃	Specifies whether a
Distance [value or field] Linear unit		10 Vilometers		dissolve will be performe to remove buffer feature overlap.
C Field		10 Kilometers		
Side Type (optional) FULL End Type (optional) ROUND			• •	 NONE—Individual buffer for each feature is maintained, regardless of overlap. This is th
			-	default.
ALL LIST TNODE_ LPOLY_ RPOLY_ LENGTH KBF_ KBF_ID			=	 ALL—Dissolves a the buffers together into a single feature and removes any overlap. LIST—Dissolves by a given list of
DESC	III		•	fields.

No overlap.

Better?

▶ 0 Polygon	0		T	
				HTT ()
				fellilli
				T C
			4	
				202

Intersections

What is the total length of roads in Amherst?

• What steps could you use to find out?

What is the total length of roads in each town in MA?

- More complicated question.
- How could you find out?

Road segments within towns

- You have two shapefiles:
- 1. Towns
- 2. Roads

Major Roads in MA

Attribute table **before** intersection

• There are 15819 major roads

ſ	Tab	le			
	0	- B	- 🏪 🌄 🛙	len ×	
	EO	TMAJRO	ADS_ARC		
II		CLASS	ADMIN_TYPE	STREET_NAME	RT_NUMBE
Ш		3	2	COLLEGE HIGHWAY	202
L		2	2	MEMORIAL DRIVE	3
Ш		2	2	MYSTIC STREET	3
Ш		2	2	MYSTIC STREET	3
Ш		2	2	ALEWIFE BROOK PARKWAY	3
Ш		2	2	ALEWIFE BROOK PARKWAY	3
Ш		2	2	CONCORD AVENUE	3
Ш		2	2	CONCORD AVENUE	3
Ш		2	2	FRESH POND PARKWAY	3
Ш		2	2	FRESH POND PARKWAY	3
Ш		3	2	ALEWIFE BROOK- CONCORD AVE ROTARY	3
Ш		3	2	ALEWIFE BROOK PARKWAY	3
Ш		3	2	FRESH POND PARKWAY	3
Ш		3	2	FRESH POND PARKWAY	3
Ш		3	2	SOZIO ROTARY	3
Ш		3	2	SOZIO ROTARY	3
Ш	F	^			
	H	•	0 + +	(0 out of 15819 Selected)	
l	EC	TMAJRO	DADS_ARC		

Towns in MA

Attribute table **before** intersection

• There are 631 towns.

Tab	ole						
0- 0-	- 1	a - I 🔓 🦻	3 🛛 🖓 🗙				
тс	WNS_	POLY					
	FID	Shape *	OBJECTID	TOWNS_ID	TOWN_ID	TOWN	FIPS_STC
F	0	Polygon	1	1	259	SALISBURY	250
	1	Polygon	2	2	7	AMESBURY	250
	2	Polygon	3	3	180	MERRIMAC	250
	3	Polygon	4	4	206	NEWBURYPORT	250
	4	Polygon	5	5	128	HAVERHILL	250
	5	Polygon	6	6	324	WEST NEWBURY	250
	6	Polygon	7	7	206	NEWBURYPORT	250
	7	Polygon	8	8	206	NEWBURYPORT	250
	8	Polygon	9	9	205	NEWBURY	250
	9	Polygon	10	10	206	NEWBURYPORT	250
	10	Polygon	11	11	206	NEWBURYPORT	250
	11	Polygon	12	12	205	NEWBURY	250
	12	Polygon	13	13	205	NEWBURY	250
	13	Polygon	14	14	181	METHUEN	250
	14	Polygon	15	15	116	GROVELAND	250
	15	Polygon	16	16	205	NEWBURY	250
						100000	050
1	• •	1	> >I 📄	🔲 (0 out of	f 631 Selecte	ed)	
T	owns	POLY					

Road Segments in Towns

Attribute table **after** intersection

- There are 18081 features.
- What does a feature represent?

-						
ro	ads_in_MA_towns					
	STREET_NAM	RT_NUMBER	TOWNS_ID	TOWN_ID	TOWN	FIPS
	RAMP-RT 140 NB TO RT 195 EB		566	201	NEW BEDFORD	
	RAMP-RT 140 NB TO RT 195 WB		566	201	NEW BEDFORD	
	RAMP-RT 140 NB TO RT 95 NB		388	99	FOXBOROUGH	
	RAMP-RT 140 SB TO RT 195 EB		566	201	NEW BEDFORD	
	RAMP-RT 140 SB TO RT 195 EB		566	201	NEW BEDFORD	
	RAMP-RT 140 SB TO RT 195 EB		566	201	NEW BEDFORD	-
	RAMP-RT 140 SB TO RT 195 WB	1	566	201	NEW BEDFORD	
	RAMP-RT 140 SB TO RT 495 NB		413	167	MANSFIELD	
	RAMP-RT 140 SB TO RT 95 NB	1	388	99	FOXBOROUGH	
	RAMP-RT 140 TO RT 2 WB		111	332	WESTMINSTER	
	RAMP-RT 140 TO RT 2 WB		111	332	WESTMINSTER	
	RAMP-RT 140 TO RT 2 WB		111	332	WESTMINSTER	
	RAMP-RT 140 TO RT 24 NB		428	293	TAUNTON	
	RAMP-RT 140 TO RT 24 NB		428	293	TAUNTON	
	RAMP-RT 140 TO RT 24 NB		428	293	TAUNTON	
	RAMP-RT 16 EB TO RT 1 NB		200	248	REVERE	
,			000			1
*						

Road segments within towns

 Segments symbolized by town

What is the total length of roads in each town in MA?

Our original question

• We could use brute force to manually select features that match each of the 631 towns, or...

10	ads_In_IVIA_towns					
	STREET_NAM	RT_NUMBER	TOWNS_ID	TOWN_ID	TOWN	FIP
	RAMP-RT 140 NB TO RT 195 EB		566	201	NEW BEDFORD	
	RAMP-RT 140 NB TO RT 195 WB		566	201	NEW BEDFORD	
	RAMP-RT 140 NB TO RT 95 NB		388	99	FOXBOROUGH	
	RAMP-RT 140 SB TO RT 195 EB		566	201	NEW BEDFORD	
	RAMP-RT 140 SB TO RT 195 EB		566	201	NEW BEDFORD	
	RAMP-RT 140 SB TO RT 195 EB		566	201	NEW BEDFORD	
	RAMP-RT 140 SB TO RT 195 WB		566	201	NEW BEDFORD	
	RAMP-RT 140 SB TO RT 495 NB		413	167	MANSFIELD	
	RAMP-RT 140 SB TO RT 95 NB		388	99	FOXBOROUGH	
	RAMP-RT 140 TO RT 2 WB		111	332	WESTMINSTER	
	RAMP-RT 140 TO RT 2 WB		111	332	WESTMINSTER	
	RAMP-RT 140 TO RT 2 WB		111	332	WESTMINSTER	
	RAMP-RT 140 TO RT 24 NB		428	293	TAUNTON	
	RAMP-RT 140 TO RT 24 NB		428	293	TAUNTON	
	RAMP-RT 140 TO RT 24 NB		428	293	TAUNTON	
	RAMP-RT 16 EB TO RT 1 NB		200	248	REVERE	
					01151 051	

Why summarize is awesome!

Why is the summarize tool awesome?

Tabl	2							
*== *=	• 🗄 • 🏪 👧	⊠ ∰ ¥						
road	ls_in_MA_towns							
	length_km	STREET_NAM	RT_NUMBER	TOWNS_ID	TOWN_ID	TOWN	FIF	PS STCO CCD MCDL FIPS PLACE
	1.5606	MASSACHUSETTS TURNPIKE	90	284	328	WESTBOROUGH	а.	Sort Ascending
	10.6476	MASSACHUSETTS TURNPIKE	90	342	329	WESTFIELD	F	Sort Descending
	10.658	MASSACHUSETTS TURNPIKE	90	342	329	WESTFIELD	So Ac Su Su Su St Fi Ci Ti Fr X Di	
	0.012797	MASSACHUSETTS TURNPIKE	90	266	198	NATICK		Advanced Sorting
	5.84281	MASSACHUSETTS TURNPIKE	90	229	333	WESTON		Summarize
	0.012877	MASSACHUSETTS TURNPIKE	90	266	198	NATICK	1	Chatistics
	5.8184	MASSACHUSETTS TURNPIKE	90	229	333	WESTON	2	Statistics
	0.003434	MASSACHUSETTS TURNPIKE	90	325	227	PALMER		Field Calculator
	1.685	MASSACHUSETTS TURNPIKE	90	352	339	WILBRAHAM	_	Calculate Geometry
	0.003435	MASSACHUSETTS TURNPIKE	90	325	227	PALMER		Calculate Geometry
	0.000167	MASSACHUSETTS TURNPIKE	90	333	161	LUDLOW		Turn Field Off
	1.68571	MASSACHUSETTS TURNPIKE	90	352	339	WILBRAHAM		5 (1) ())
	1.42257	MASSACHUSETTS TURNPIKE	90	234	35	BOSTON		Freeze/Unfreeze Column
	0.178536	MASSACHUSETTS TURNPIKE	90	234	35	BOSTON	×	Delete Field
	0.395168	MASSACHUSETTS TURNPIKE	90	234	35	BOSTON	~	
	0.929562	MASSACHUSETTS TURNPIKE	90	231	35	BOSTON		Properties
	0 700070				05	DOOTON .		
н	• 0 ►	▶ ♥ (0 out of 18081 Selected)					
roa	ds_in_MA_towns							

Aggregation

- Summarize will count features, aggregated by unique values
- It will also perform calculations like total length, area, etc!

Aggregation

Summarize creates a table with:

Count_TOWN:

 Total number of major road segments in that town.

Sum_length_km:

• Sum of the lengths of all major roads in that town.

Are we finished?

Sui	m_Out	put		
	OID	TOWN	Count_TOWN	Sum_length_k
	1	ABINGTON	21	23.14
	2	ACTON	38	47.47
	3	ACUSHNET	9	24.01
	4	ADAMS	8	10.24
	5	AGAWAM	57	63.5
	6	ALFORD	1	2.35
	7	AMESBURY	57	47.53
	8	AMHERST	89	74.18
	9	ANDOVER	125	124.40
	10	AQUINNAH	3	5.53
	11	ARLINGTON	80	42.28
	12	ASHBURNHAM	16	29.082
	13	ASHBY	11	18.60
	14	ASHFIELD	13	30.21
	15	ASHLAND	24	23.11
П	16	ATHOL	47	45.94
П	17	ATTLEBORO	86	95.31
	40	AUDUDN		70 70

What is the total length of roads in each town in MA?

We now have a total road length for each town...

how could we **join** these measurements to our towns attribute table?

oaus_III_IVIA_towns						
STREE	ET_NAM	RT_NUMBER	TOWNS_ID	TOWN_ID	TOWN	FIF
RAMP-RT 140 NB T	0 RT 195 EB		566	201	NEW BEDFORD	
RAMP-RT 140 NB T	0 RT 195 WB		566	201	NEW BEDFORD	
RAMP-RT 140 NB T	O RT 95 NB		388	99	FOXBOROUGH	
RAMP-RT 140 SB T	0 RT 195 EB		566	201	NEW BEDFORD	
RAMP-RT 140 SB T	0 RT 195 EB		566	201	NEW BEDFORD	
RAMP-RT 140 SB T	O RT 195 EB		566	201	NEW BEDFORD	
RAMP-RT 140 SB T	0 RT 195 WB		566	201	NEW BEDFORD	
RAMP-RT 140 SB T	0 RT 495 NB		413	167	MANSFIELD	
RAMP-RT 140 SB T	O RT 95 NB		388	99	FOXBOROUGH	
RAMP-RT 140 TO R	T 2 WB		111	332	WESTMINSTER	
RAMP-RT 140 TO R	T 2 WB		111	332	WESTMINSTER	
RAMP-RT 140 TO R	T 2 WB		111	332	WESTMINSTER	
RAMP-RT 140 TO R	T 24 NB		428	293	TAUNTON	
RAMP-RT 140 TO R	T 24 NB		428	293	TAUNTON	
RAMP-RT 140 TO R	T 24 NB		428	293	TAUNTON	
RAMP-RT 16 EB TO	RT 1 NB		200	248	REVERE	
					00000000	1

Join!

Join the summary table back to the towns polygon (both have the common attribute of TOWN)

This will bring the attribute of total road length into your polygon shapefile of roads

What is the name for this kind of map?

