Deck 4: The Earth's Shape – Coordinate Systems and Map Projections

Modeling a Lumpy Space Potato

Intro to GIS – UMass Amherst – Michael F. Nelson

Overview

The Earth's Shape

- Models: Spheres, geoids, and ellipsoids
- Datums and Coordinate Systems

Projections and Maps

- Types of Projections
- Map Classes

What is Earth's shape?

Model Thinking: A useful simplification of the earth's shape?

- Flat*?
- Sphere?
- Ellipsoid?
- Lumpy Space Potato?
- Geoid?

* The earth is not flat.

Model 1: Flat

If Earth were flat, GIS would be way easier

Projections & Coordinate systems

If the Earth were Flat...

• Just ask Gato Malo

IF THE EARTH WAS FLAT

CATS WOULD HAVE PUSHED Everything off it by now

Earth is not flat, but...

But at small extents, flat is a useful model.

Considering the actual 3D shape becomes much more important as we zoom out.

Model 2: Sphere

Spherical Model

The size of a sphere is defined by a single, constant radius.

Model 3: Ellipsoid

Ellipsoid Models

- Ellipsoids have two radii: semimajor (equatorial) and seminar (polar)
- Equatorial bulge
- A measure of flattening:

$$f = \frac{a-b}{a}$$

A Space Potato?

A lumpy space potato

Earth is NOT a perfect ellipsoid or a sphere

Lumpy Space Potato

- The true shape of the earth is more like a lumpy potato with undulations from the ellipsoid as much as 100 m.
- There is also a large bulge in the earth of 10 to 15m in the Southern Hemisphere giving rise to the description of earth as pear shaped.

Source: Paul Bolstad. 2012. GIS Fundamentals – A first text on Geographic Information Systems. 4th ed.

Geoid

- A better approximation of the actual shape of the Earth is a Geoid, literally "Earth-like".
- The Geoid is determined by gravitational measurements.

Geoid

- The Geoid is similar, but not always equivalent, to the Earth's mean-sea-level surface.
 - For land, MSL is height to which water would rise in a well that is connected to the ocean.

Terrain, Ellipsoid, and Geoid

Limiting Complexity: Tradeoffs

- All models are wrong, some models are useful.
- The Geoid, while a much simpler shape than the earth's topographic surface is still very complex.
- For most uses, the simpler ellipsoid works well.
- But... How do we choose the "best" ellipsoid?

Local Ellipsoids

Different Ellipsoids are developed to fit accurately over the area of interest

Copyright © 2009 Pearson Prentice Hall, Inc.

Calculating Ellipsoid Height

- Orthometric height: difference between geoid and surface
- Geoidal height: difference between geoid and ellipsoid

ellipsoidal height = orthometric height + geoidal height

Source: Paul Bolstad. 2012. GIS Fundamentals – A first text on Geographic Information Systems. 4th ed.

What is the Earth's Shape?

It's complicated.

A better question:

How can we usefully model the Earth's shape?

How can we specify locations on Earth's surface?

Coordinate systems to the rescue!

Coordinate Systems

- To be meaningful, spatial data (whether raster or vector) must be associated with a location.
- Coordinate systems are used for the location or registering of those data

Spherical Coordinate System (2D)

- Latitude: degrees (°) North or South of the Equator
- Longitude: degrees (°) East or West of The Prime Meridian
- It's 2D in the sense that we can unambiguously locate any point on the surface using 2 coordinates.

A triangle with 3 right angles???

- Start at the equator, facing west.
- Turn right, walk to the North pole.
- Turn right, walk to the equator.
- Tur right, return to starting point.

https://www.researchgate.net/publication/237417585_Smarandache_manifolds

Meridians

- Meridians are parallel at the equator....but intersect at the poles. Very non-Euclidean!
- Meridians run north-south. A.k.a. longitude lines.

Great and small circles: parallels

• Parallels: lines of latitude

Distance and Directions on the Earth

Copyright © 2009 Pearson Prentice Hall, Inc.

Copyright © 2009 Pearson Prentice Hall, Inc.

Shortest distance between 2 points on a sphere: great circle path.

Distance and Directions on the Earth

Loxodrome (Rhumb) path: constant compass bearing.

Distance and Directions on the Earth

Copyright © 2009 Pearson Prentice Hall, Inc.

0° Longitude (Prime Meridian) Geocentric Coordinate System (3D)

3-dimensional Terrestrial Reference System, allows referring to positions below or above the Earth's surface

What is a Datum?

In surveying and geodesy, a **datum** is a reference point or surface against which position measurements are made, and an associated model of the shape of the earth for computing positions

http://en.wikipedia.org/wiki/Geodetic system

- A geodetic datum is a mathematical model of the earth upon which geodetic computations are based.
- A datum is a reference system with two components:
 - A specified elliposid with a spherical coordinate system and an origin
 - A set of highly accurate surveyed points and lines to anchor the ellipsoid
- There are *Regional* and *Global* Datums.

A **DATUM** uses an ellipsoid model Earth's shape.

Depending on where you are on Earth, you might want to optimize your ellipsoid to your location.

• A **DATUM** is a model of the Earth as an ellipsoid that is anchored to specific locations on or below the Earth's surface.

Example datums:

• WGS84 (World geodetic system)

• NAD27 (North American datum)

• A **DATUM IS NOT** a coordinate system or projection.

Does it Make a Difference?

Does it Make a Difference?

What Makes a Datum?

The key take-home is that a datum has 2 main components:

- 1. An ellipsoidal model of the Earth's 3D shape
 - The specific ellipsoid is defined by its two radii: equatorial/polar or semimajor/semiminor
- 2. A set of surveyed points that ties the ellipsoid to specific locations on the Earth's surface

How can we represent a 3D surface on a 2D map?

Write your name on the orange, then peel it to make your name flat. (yes, eat the orange)

The Classic Orange Peel

https://s-media-cacheak0.pinimg.com/736x/2d/81/fc/2d81fcafacdc11ec04f34d1b1c587954.jpg

Intro to Projections with Hanna Fry

https://www.youtube.com/watch?v=D3tdW9I1690&feature=emb_logo&ab_channel=Numberphile

Time for a stretch break

Three main types of map projections

Cylindrical, Conic, Azimuthal

The Map Projection Principle

- 1. Reference globe
- 2. Developable surface
 - ≻Cylinders

➢Cones

➢Planes

Class and aspect

Cylindrical Projections

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

Mercator Projections

- Developed by Dutch cartographer Gerardus Mercator in 1569
- Preserves shape & direction
- Used widely for navigation charts because direction is preserved.
- Distance/area preserved at line of tangency often the equator.

What parts of the Earth look best in Mercator?

Cartographers for social equality

To Mercator or not to Mercator

- March 2017 Massachusetts became the first state to officially adopt a Gall-Peters projection in all K-12 classrooms
- Gall-Peters is an equal-area cylindrical projection.

https://www.youtube.com/watch?v=vVX-PrBRtTY

Transverse Mercator

When would we want to use transverse Mercator?

Conic Projections

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

Conic: Conformal or Equal Area

- Equal area: Areas are (mostly) preserved
 - North and south parallels are squished
- Conformal: Shapes of objects are (mostly) preserved.
 - Central parallels more closely spaced

MassGIS uses Lambert Conformal Conic

Salem, MA

-80, 35

When would we want to use a conic projection?

When would we want to use a conic projection?

- Mid-latitudes
- East/West oriented regions

Azimuthal (planar) Projections

 Single point of tangency – usually a pole

Equator

Polar -Mapmaker selects North or South Pole Oblique -Mapmaker selects any point of tangency except along the Equator or Pole

Equatorial -Mapmaker selects central meridian

Stereographic (Azimuthal)

When would we want to use an Azimuthal projection?

When would we want to use an Azimuthal projection?

Rounded shapesPolar regions

North pole orthographic

South pole stereographic

The Map Projection Process II

- Projecting GIS data from one map projection to another is accomplished via *exact* mathematical transformations.
- Vector data can be projected "on the fly" (in real time) and does not result in loss of information.
- ArcGIS can *display* rasters reprojected on the fly, resulting in distorted cells, but no loss of information.
- Re-projecting raster data is computationally intensive and can result in loss of information.

Why Map Projections Matter

They literally affect our world view.

Or your regional view

Or if you live in a big state like Texas...Your Local View

Much Like Thermodynamics, You Can't Win

- When going from a 3-D sphere to a 2-D piece of paper it is inevitable that distortion will occur.
- To maintain one of the properties, you have to give up the others.
- Selection of a map projection means deciding what to save and what to give up.

The Classic Orange Peel

https://s-media-cacheak0.pinimg.com/736x/2d/81/fc/2d81fcafacdc11ec04f34d1b1c587954.jpg

Reprojecting

ArcGIS can translate between projections ArcGIS will reproject 'on the fly'

- You can have multiple spatial layers with different projections
- The ArcMap document can be in a different projection from your data layers
- As long as your projections are defined correctly, everything will be fine
- Arc stores a reprojected version of your data in memory.

ArcGIS can translate between projections

UNLESS

- You are using spatial data with different projections, but those projections are not defined
 OR
- Your projection is *incorrectly* defined
 - Someone's metadata is wrong on the internet!

Need projection info about your data?

Use the source (tab)

Layer Properties Source Selection Display Symbology Fields Definition Query Labels Joins & Relates General Extent Top: 42.886818 dd Left: -73.508240 dd Right: -69.927802 dd Bottom: 41.237962 dd Data Source Data Type: Shapefile Feature Class D:\Dropbox\Bethany\Teaching\Intro GIS\Lectures_201 Shapefile: Geometry Type: Polygon Coordinates have Z values: No Coordinates have measures: No Geographic Coordinate System: GCS_North_American_1983 Datum: D_North_American_1983 Prime Meridian: Greenwich Angular Unit: Degree HI.

For a PCS, Arc GIS Pro shows both the projection and the GCS of the source datum. The PCS information will be displayed first, if your data is projected. Spatial Data Formats: Projections and Reversibility Vector data: Vertices have **explicit x- and y- coordinates.**

• Transformations are reversible (in principle)

Raster data: Cell location is **implicitly defined** by corner coordinates, number of rows, number of columns.

• Transformations may be destructive: output rasters may have different number of rows and columns

- Globes preserve:
 - Area
 - Shape
 - Distance
 - Direction

Globe vs. Map

- Maps *may* preserve:
 - Area: equal area projections
 - Shape: conformal projections
 - Distance: equidistant projections
 - Direction: azimuthal preojections

The Types of Maps

- There are four general types of map. Each of these four types is designed to preserve one of the four major properties of a globe, but to accomplish this it is necessary to make accommodations in the other three...
- The art of selecting an appropriate map projection is determining which property of the globe is most important to preserve while striving to minimize distortions in the others for your area of interest.

Map Types: maps can preserve: Size: equal-area

Distance: equidistant

Shape: conformal

Direction: azimuthal

• But... the direction is only true from central point of tangency

Copyright © 2009 Pearson Prentice Hall, Inc.

Copyright © 2009 Pearson Prentice Hall, Inc.

Tissot Indicatrix

Projections and Tissot's Indicatrix

• Source: Thomas Rabenhorst

Equal Area

Areas are preserved at the expense of other properties.

Area Preserving (Equal Area)

Advantages

• Equal area projections are best employed to show spatial distributions and relative sizes of spatial features, such as political units, population, land use and land cover, soils, wetlands, wildlife habitats, and natural resource inventories.

Disadvantages

• Spatial features on the maps will inevitably be distorted in shapes, distances, and directions.

Albers Equal-Area Conic Projection

All the second s

Lambert Azimuthal Equal-Area Projection

Class	Conic
Aspect	Normal
Property	Equal-Area

Class	Azimuthal		
Aspect	Normal		
Property	Equal-Area		

Conformal

- Shape (of small areas) are preserved.
- Preserves local angles.
- Ideal for navigation.

Shape Preserving (Conformal)

Advantages

- Relative local angles about every point on the map are shown corectly.
- Important for topographic mapping and navigation purposes

Disadvantages

• The need to retain shape inevitably distorts both area and distance

Ex: Mercator Projection

Class	Cylindrical
Aspect	Normal
Property	Conformal

<u>By Stefan Kühn - Own work, CC BY-SA</u> <u>3.0</u>

Class	Cylindrical
Aspect	Transverse
Property	Conformal

By Kurubu - Own work, CC BY-SA 4.0

Equidistant

- Distance along designated great circles are true; or:
- Distances from one point to all others is true.

Distance Preserving (Equidistant)

Advantages

- Equidistance is a useful compromise between the conformal and equal-area projections because the area scale of an equidistant map projection increases more slowly than that of a conformal map projection.
- As a result, the equidistant map projection is used more often in atlas maps.

Disadvantages

- The property of equidistance is very sensitive to scale change.
- All measurements made away from the lines of true scale are subject to distance distortion due to changing scales.

Azimuthal Equidistant:

- Distances from central point are true
- Directions from central point are true

Class	Azimuthal
Aspect	Normal
Property	Equidistant

Azimuthal Equal Area

- Area preserved
- Shape distorted

Image by Tobias Jung

map-projections.net

Choosing a Map Projection • The selection of a map projection is made based on:

- Shape and size of the area
- Purpose of the map
- Position of the area

Purpose of the Map

Conformal

- maps which require measuring angles (*aeronautical charts, topographic maps*)
- Equivalent (Equal Area)
 - maps which require measuring areas (*distribution maps*)
- Equidistance
 - maps which require reasonable area and angle distortions (several thematic maps)

Terminology Alert!

- Map type refers to the globe characteristic that is preserved: area, direction, shape, distance.
- Projection type generally refers to the shape of the developable surface: planar, conical, cylindrical
- You can potentially make multiple map types from one projection type. For example, conical projections can produce
 - Equal-area maps
 - Conformal maps

Coordinate Systems Supplement

Snyder's map projection guideline

TABLE 9.1Snyder's map projection guideline showing projections for mapping the world

Region Mapped	Property	Characteristic	Named Projection
World	Conformal	Constant scale along Equator Constant scale along a meridian Constant scale along an oblique great circle	Mercator Transverse Mercator Oblique Mercator
		No constant scale anywhere on the map	Lagrange August Eisenlohr
	Equivalent	Noninterrupted	Mollweide Eckert IV & VI McBryde or McBryde–Thomas Boggs Eumorphic Sinusoidal Other miscellaneous pseudocylindricals
		Interrupted	Hammer (a modified azimuthal) Any of the above except Hammer Goode's Homolosine
		Oblique aspect	Briesemeister Oblique Mollweide
	Equidistant	Centered on a pole Centered on a city	Polar azimuthal equidistant Oblique azimuthal equidistant
	Straight rhumb lines		Mercator
	Compromise distortion		Miller cylindrical Robinson pseudocylindrical

Copyright © 2009 Pearson Prentice Hall, Inc.

Snyder's map projection guideline

TABLE 9.2 Snyder's projection selection guideline showing planar projections for mapping a hemisphere

Region Mapped	Property	Named Projection
Hemisphere	Conformal Equivalent	Stereographic conformal Lambert azimuthal equivalent
	Equidistant Global look	Azimuthal equidistant Orthographic

Copyright © 2009 Pearson Prentice Hall, Inc.

Snyder's map projection guideline

TABLE 9.3 A portion of Snyder's map projection guideline, showing projections for mapping a continent, ocean, or smaller region

Region Mapped	Directional Extent	Location Property		Named Projection
Continent, ocean, or smaller region	East-West	Along the Equator	Conformal	Mercator
			Equivalent	Cylindrical equivalent
		Away from the Equator	Conformal	Lambert conformal conic
			Equivalent	Albers equivalent conic
	North–South	Aligned anywhere along a meridian	Conformal	Transverse Mercator
		C C	Equivalent	Transverse cylindrical equivalent
	Oblique	Anywhere	Conformal	Oblique Mercator
			Equivalent	Oblique cylindrical equivalent
	Equal extent	Polar, Equatorial, or Oblique	Conformal	Stereographic
		•	Equivalent	Lambert azimuthal equivalent

Copyright © 2009 Pearson Prentice Hall, Inc.

Common Map Projections, Their Properties and Major Uses										
Projection/Construction	Appearance	Properties		Major Us	es					
Albers equal- area/conical	(a)	Equal area; confo along standard pa	ormal arallels	Small region national m	al and aaps		-			
Azimuth equidistant/planar	(b)	Equidistant; true di from map cen	rections ter	Air and sea naviga equatorial and large-scale	ntion charts; polar area maps	Common Map Projections Properties and Major Uses		s, Their		
Equidistant conic/conical	(c)	Equidistant ale standard paralle central meridi	ong l and ian	Region mapp midlatitude ar east-west exte maps for small	bing of eas with nt; atlas countries					
Lambert conformal conic/conical	(d)	Conformal; tr local directio	rue ns	Navigation charts Plan Coordinate Sy for all east–west Zones; continenta Canadian n	; U.S. State vstem (SPCS) State Plane l U.S. maps; maps					
Mercator/cylindrical	(c)	Conformal, true directio	; m	Navigation of conformal wor	charts; rld maps					
Polyconic/conical		Equidistant along standard paralle central merid	g each 1 and ian	Topographic USGS 7.5- 15-min quad	maps; and rangles				_	
			Robins	son/ ocylindrical		(g)	Compromise between properties	Thematic world maps		
			Sinuso pseudo	oidal/ ocylindrical	00 ((h)	Equal area; local directions correct along central meridian and equator	World maps and continental maps		
			Stereo	ographic/planar		(i)	Conformal; true directions from map center	Navigation charts; polar region maps		
			Transv Merca	verse htor/cylindrical		j)	Conformal; true local directions	Topographic mapping for areas with north–sou extent; U.S. State Plan Coordinate System (SPC for all north–south Stat Plane Zones	th • S) e	

Summary

- Selection of a projection could be very confusing for a novice cartographer – there are good guidelines with a logical hierarchy (Snyder)
- Objective should be to keep distortion minimum
- Amount of distortion can be kept small by aligning the geographic area under the consideration with the standard lines or by positioning the map's center with the standard point
- The size of the area to be map is directly linked to the importance of distortion
- The map projection has an influence on overall map design

Projection systems used in the world*

Projection	Areas
UTM	42 %
TM (Gauss-Kruger)	37 %
Polyconic	10 %
Lambert Conformal Conical	5 %
Others	6 %

* for Topographic mapping

UTM

• The UTM projection is designed to cover the world, excluding the Arctic and Antarctic regions. To keep *scale distortions* within acceptable limits, 60 narrow, longitudinal zones of six degrees longitude in width are defined and are numbered from 1 to 60.
Position of the Area

Copyright © 2009 Pearson Prentice Hall, Inc.

Copyright © 2009 Pearson Prentice Hall, Inc.

Which Map Projection to Select?

Projection Face – an illustration of the distortions created by different map projections

Degenerate State's Map Projections

Projection Wizard

Projection Wizard + -

© 2017 Bojan Savrič Maps created with Leaflet and D3. Tiles: © Esri.

KX 38 83 35

180° 00' 00" E

180° 00' 00" W

0

Distortion Property

• Equal-area

O Equidistant O Compromise

North: 90° 00' 00" N 90° 00' 00" S

Rectangle

South:

East:

West:

Equal-area world map projections with poles represented as points

Mollweide proj.4 Hammer (or Hammer-Aitoff) PROL4 Boggs Eumorphic PROLA Sinusoidal PROL4

Equal-area world map projections with poles represented as lines

Eckert IV proj.4 Wagner IV (or Putnins P2') PROL4 Wagner VII (or Hammer-Wagner) PROL4 McBryde-Thomas flat-polar quartic PROL4 Eckert VI proj.4

Equal-area interrupted projections for world maps with poles represented as points

Mollweide **Boggs Emorphic** Goode homolosine PROL4 Sinusoidal

Mollweide

Wagner IV

The True Size

Interrupted Projections

Balance distortions by splitting the surface.

Know Your Rat Projections

Know Your Rat Projections

Robinson Rat

Sinusoidal Rat

Mercator Rat

Conic Rat

Peters Rat

Maptime Boston

Dymaxion Rat

Consider the Following

- The Mercator projection vastly distorts area, but is the basis for the 'Web Mercator' used by online systems.
- Answer: Why is Mercator the basis for online mapping?

Open Street Map Program

Orthographic Projection

• Note that on a globe all Tissot Ellipses are the same size and are circular since on a globe both area and shape are preserved correctly

Identifying Distortion Using Tissot's Indicatrix

Cassini Projection

