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Dummy Variables and 
Interactions
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What’s in This Section?

• Dummy variables
• Categorical predictors (factors)
• Dummy variables
• Design matrix
• Factor levels and model coefficients
• Interactions

• How to represent categorical data in a 
regression equation.

• Interpreting factor coefficients as 
slopes.

• What does the base case represent?
• For categorical data
• For numerical data

• Representing and interpreting an 
interaction

Slide Show Take-Home Concepts
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Analysis of Variance and Linear Models

• But… how can we draw a line on an x-
y plane when the x-axis is a category?  

• What would the slope represent?

• A linear model: 𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝜖𝜖
• Recall what the components mean?

• A 2-level factor: male and female
• We assume a simple model of sex 

for our purposes
• I propose we can meaningfully 

represent these as numbers

Regression Equation Penguin Sex

I claim that all Group 1 methods are really linear regressions.  
This includes the models we’ve used for one- and multi-way ANOVA
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Dummy Variables

A deterministic function is a model of 
the means. With a model of penguin 
body mass as a function of sex:

𝑦𝑦 = [intercept] + sex + 𝜖𝜖
We propose to explain body mass by 
sex only.  Well, sex and an intercept, 
that is!
… but wait, the intercept turns out to 
represent our base-case sex, but we’ll 
get to that.

Our Sex Model Sex and Body Mass
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Dummy Variables: Sex as Numeric
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We could relabel sex as a number. Plot the points rather than a summary.

0 1

30
00

40
00

50
00

60
00

sex

bo
dy

 m
as

s 
(g

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

30
00

40
00

50
00

60
00

sex
bo

dy
_m

as
s_

g



Dummy Variables: Sex as Numeric

species
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Re-code sex as a number

# load the package
require(palmerpenguins)

# recode to 0 and 1
penguins$n_sex =
as.numeric(penguins$sex) – 1

# take a look head(penguins)



Dummy Variables: Sex as Numeric

fit_sex =

lm(

body_mass_g ~ sex_n,

data = penguins)
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We could fit a linear model to that! 
Ignore the obvious normality issues!
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Model Design Matrix

It’s a binary representation
• Every entry in n_sex is either 0 or 1
• It’s categorical, but R can treat it as 

numeric.  Why?
• Hint: we don’t want to do this! Why?

We recoded sex to numeric
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Model Design Matrix

Y = 𝛼𝛼 + 𝛽𝛽X + 𝜖𝜖

Using linear algebra, i.e. working with 
matrices and vectors, we can use the 
matrix/vector form to calculate all of 
the predicted values at once.

The key is converting sex to binary.
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Recall the matrix/vector form of the 
regression equation:



Model Design Matrix
Keep only the numbers and add an ‘intercept’ 

column.
And remember the regression equation:

Y = 𝛼𝛼 + 𝛽𝛽X + 𝜖𝜖
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Model Design Matrix and Dummy Variables

Now we can do matrix-vector 
multiplication using a vector of 
the model coefficients and the 
matrix/vector form to multiply 
the model matrix directly!
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Finally…..



Factor Levels
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• We could use 0 and 1 to 
represent a two-level factor.

• Could we use 0, 1, 2?
• Categorical scale: “interval” 

between levels is not consistent.
• Is the “distance” between Adelie 

and Gentoo twice the “distance” 
between Adelie and Chinstrap?

What if a factor variable has more than 
2 levels?
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For n-level factors, we have to create n-
1 dummy variables.
• Numeric coding can take on values 0 to n-1

• Each dummy variable can only take on 
values of 0 or 1.

• When the factor level is the base case, 
all dummy variables have value 0.

Factor Levels: Numeric – Don’t do this!!!

penguins$n_sex =
as.numeric(penguins$sex) – 1

penguins$n_species =
as.numeric(penguins$species) - 1
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Numeric Coding
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Factor Levels: Numeric – Don’t do this!!!
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Numeric Coding

• Sometimes factor variables are coded 
as numeric.

• We must remember to factorize them 
in R.

• If we forget, R will treat them as 
numeric, and we’ll build inappropriate 
models!

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 15



For n-level factors, we have to create n-
1 dummy variables.

• Numeric coding can take on values 0 to 
n-1

• Each dummy variable can only take on 
values of 0 or 1.

• When the factor level is the base case, all 
dummy variables have value 0.

Factor Levels: Dummy Variables- Do This!

penguins$n_sex =
as.numeric(penguins$sex) – 1

penguins$n_species =
as.numeric(penguins$species) - 1
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Dummy Variables
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Factor Levels

• Base species =?
• Base sex = ?

What are the base cases?
sex
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Factor Levels

female male
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Dummy Variables and Model 
Coefficients
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Dummy Variables

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 20

• What does the intercept mean?
• What is the base case?
• What does the slope coefficient 

mean?

How should we interpret the model 
coefficients for dummy variables?



Build a Model!

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 21

fit_sex = lm(

body_mass_g ~ sex,

data = penguins)

summary(fit_sex)

## Call:

## lm(formula = body_mass_g ~ sex, data = penguins)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -1295.7  -595.7  -237.3   737.7  1754.3 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept)  3862.27      56.83  67.963  < 2e-16 ***

## sexmale 683.41      80.01   8.542  4.9e-16 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 730 on 331 degrees of freedom

##   (11 observations deleted due to missingness)

## Multiple R-squared:  0.1806, Adjusted R-squared:  0.1781 

## F-statistic: 72.96 on 1 and 331 DF,  p-value: 4.897e-16



Dummy Variables and Model Coefficients

The coefficients for dummy variables are showin in the model coefficient 
table:
fit_species = lm(body_mass_g ~ species, data =
penguins)
summary(fit_species)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3700.662 37.619 98.371 0.000

speciesChinstrap 32.426 67.512 0.480 0.631

speciesGentoo 1375.354 56.148 24.495 0.000
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Dummy Variables and ANOVA

Since the dummy variables all belong to a single predictor variable, they 
collapse to a single line in the ANOVA table
anova(fit_species)

Df Sum Sq Mean Sq F value Pr(>F)

species 2 146864214 73432107.1 343.6263 0

Residuals 339 72443483 213697.6 NA NA
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Interactions
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Interactions

Consider two models:
Model 1 - body mass predicted by sex and species 
Model 2 - body mass predicted by the interaction between sex and species
In R:
fit_1 = lm(body_mass_g ~ sex + species, data =
penguins)
fit_2 = lm(body_mass_g ~ sex * species, data =
penguins)
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Interactions: Model 1 (Additive)

What does model 1 propose?

1.A species effect: each species has a has a slope that defines the 
difference between the base case and the species.

2.A sex effect: There is a difference between the base case (female) and 
the male sex.
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Interactions: Model 1 (Additive)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3372.387 31.427 107.308 0.000

sexmale 667.555 34.704 19.236 0.000

speciesChinstrap 26.924 46.483 0.579 0.563

speciesGentoo 1377.858 39.104 35.236 0.000

How are species and sex effects related?
• The species effect is the same within a sex.
• The sex effect is the same within a species.
• Male penguins are always 668 grams heavier than females, regardless of 

species.
• Gentoo penguins are always 1378 grams heavier than Adelie penguins, 

regardless of sex.  (male Gentoo weigh 1378 more than male Adelie)
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Does the model 1 
structure make sense? 
We can assess 
graphically, grouped by 
species:
• If males are always 

668 grams heavier 
the boxplots would 
look like this:

Interactions: Model 1 (Additive)
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Interactions: Model 2 (Interactive)

What does model 2 propose?
Main Effects

1.A species effect: each species has a has a slope that defines the 
difference between the base case and the species.

2.A sex effect: There is a difference between the base case (female) and 
the male sex.

Interaction Effects
• The species and sex effects might not be independent:

• The difference between sexes can be different for each species.
• The differences among species can be different for each sex.
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Interactions: Model 2 (Interactive)

The model now has interaction slope coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3368.836 36.212 93.030 0.000

sexmale 674.658 51.212 13.174 0.000

speciesChinstrap 158.370 64.240 2.465 0.014

speciesGentoo 1310.906 54.422 24.088 0.000

sexmale:speciesChins
trap

-262.893 90.849 -2.894 0.004

sexmale:speciesGent
oo

130.437 76.436 1.706 0.089
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Interpreting the interaction coefficients

• The difference between male and female Adelie penguins is 675 grams
• male/Gentoo interaction is positive: The difference between sexes is 

larger for Gentoo penguins
• male/Chinstrap interaction is negative: The difference between sexes is 

smaller for Chinstrap penguins
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We can see the 
interactions graphically:
Adelie male/female 
difference is 675 g

Model 2
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We can verify our 
estimates numerically:
Adelie male/female 
difference is 675 g
Chinstrap difference is 412
Gentoo difference is 805 

Model 2
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Interactions: ANOVA Tables

Compare the ANOVA tables:

Df Sum Sq Mean Sq F value Pr(>F)

sex 1 38878897 38878896.9 387.8555 0

species 2 143401584 71700792.0 715.2863 0

Residuals 329 32979185 100240.7 NA NA

Df Sum Sq Mean Sq F value Pr(>F)

sex 1 38878897 38878896.91 406.14 0

species 2 143401584 71700791.99 749.02 0

sex:species 2 1676557 838278.37 8.76 0

Residuals 327 31302628 95726.69 NA NA
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Interactive Model Matrix

head(model.matrix(fit_2))

##   (Intercept) sexmale speciesChinstrap speciesGentoo sexmale:speciesChinstrap

## 1           1       1                0             0                        0

## 2           1       0                0             0                        0

## 3           1       0                0             0                        0

## 5           1       0                0             0                        0

## 6           1       1                0             0                        0

## 7           1       0                0             0                        0

##   sexmale:speciesGentoo

## 1                     0

## 2                     0

## 3                     0

## 5                     0

## 6                     0

## 7                     0
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Interactions

You can think of interactions in may ways, including:
• Inhibiting
• Facilitating
• Synergistic
• Adjusting

Interactions are easiest to understand with factors, but they also work 
with continuous predictors.
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Announcements – Nov 17

• We’re finishing week 11… Can you believe it?
• Make sure you think carefully about which topics you’d like me to recap!

• Your answers will form the basis of slides and possibly in-class assignments.
• Your answers also help me improve my coverage of topics for next year!

• Don’t wait to set up GitHub Desktop!
• Like R and RStudio, it goes smoothly for many, but for some (especially Macs) 

there can be hiccups.

• Take some time to review your gradebook in Moodle over the break.
• Let us know if you find any issues.
• Take stock of any old assignments you may need to complete.
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Statistical Power
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What’s in This Section?

• Alpha: significance level, specified in 
advance

• Beta: false negative rate, estimated 
after data collection

• Critical value: test statistic must be 
more extreme than this value to reject 
null.

• Errors: false negatives and false 
positives.

• Type 1 and Type 2 errors
• Alpha and Beta
• How to control the false negative rate

Slide Show Take-Home Concepts
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Hypothesis Testing
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• Null hypothesis is either 
true of false.

• But we can’t know for 
sure!

• An observation either 
belongs to the null or 
alternative hypothesis.

• But we can’t know for 
sure!

Rejection region(s) are in the 
tail(s) of the null distribution.



• alpha is the likelihood 
that we falsely reject 
a true null 
hypothesis.

• this is the p-value 
cutoff that we specify 
ahead of time.

False Positives: alpha
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False Negatives: beta

Beta is the type II error rate: failing to reject a false null 
hypothesis.

• We select a p-value cutoff ahead of time: alpha
• The false negative rate depends on our choice of 

alpha and the data.
• We cannot know beta until after we have collected 

data :(
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False Negatives: beta

We can think of a false negative as when an observation 
belongs to the alternative hypothesis distribution, but 
falls outside of the rejection region.

• It belongs to the alternative distribution because the 
null hypothesis is false.

• But… it looks like it should belong to the null 
hypothesis because it is outside of the rejection 
region.
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Alpha and Beta
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• Statistical Power: the probability 
that we correctly reject a false 
null hypothesis.

• Statistical power is 1 – beta
• We can’t know our statistical 

power until after we collect data.

Power Analysis
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Factors that influence statistical power

• Sample size/sampling distribution
• Population variance
• Effect size
• Our choice of alpha
• You cannot simultaneously decrease the false 

positive rate and increase statistical power!
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Effect of Alpha

The choice of alpha affects our statistical power:
• Small alpha makes the rejection region smaller:

• We have to observe a more extreme value to be in 
the rejection region.

• Less overlap between the rejection region and the 
alternative distribution.

• More overlap between the alternative distribution 
and the fail-to-reject region

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 50



Effect of Alpha

The choice of alpha affects our statistical power:
• Large alpha moves the rejection region closer to the 

center of the null distribution.
• We’re more likely to observe a value within the 

rejection region by chance.
• More overlap between the rejection region and the 

alternative distribution.
• Less overlap between the alternative distribution 

and the fail-to-reject region
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There’s a tradeoff 
between power and 
false positive rate.
If we’re willing to 
accept more false 
positives, we have 
more power.

Effect of Alpha
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Smaller population 
standard deviation 
makes the sampling 
distribution 
narrower. narrower.
• Smaller overlap 

between null and 
alternative 
distributions.

Effect of Population Standard Deviation
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If the effect is larger, 
the null and alternative 
distributions are more 
separated.
Larger effects = the null 
and alternative curves 
are further apart

Effect of Effect Size
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• Errors: false negatives 
and false positives.

• Alpha and Beta
• Tradeoff between 

false positive rate and 
statistical power.

• How to control the 
false negative rate

Key Concepts
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Final Projects

Important steps
• Create GitHub account
• Create git repository and add it to GitHub
• Set up GitHub Desktop

• You may use another git client if you are already familiar with git.
• Start on this ASAP

• Final project components
• R guide
• Data Analysis
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In-Class

• Finish Ginkgo graphical analysis activity
• GitHub account and GitHub desktop
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