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Regression Concepts 1
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What’s in This Section?

Important take-home concepts
• What is a regression model?
• What is the constellation of methods?
• What are the 4 key assumptions?

• Normality of the residuals
• Homogeneity
• Fixed x
• Independent observations

• Residuals
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What is a Regression?

Regression is a modeling paradigm in 
which we specify a mathematical 
relationship between independent and 
dependent variables.

• A regression includes a 
deterministic model to specify the 
average behavior.

• It specifies a stochastic model to 
describe the variability around the 
average behavior.
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Regressions embody the dual-model concept

Artwork by @allison_horst



Regression Acronyms: The constellation
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• There are many types of 
regression models including:

• General Linear Models
• Generalized Linear 

Models
• Mixed Models

• Think of the collection as a 
constellation of methods
• There are a lot of similar 
names and acronyms

Bolker: Ecological Models and 
Data in R, Figure 9.2



The simplest model we can 
fit is always a linear model!
General Linear Models form 
the core group of regression 
models.
• Other regression model 

paradigms are extensions 
of General Linear Models.

We’ll spend a lot of time on 
this class of models, which 
I’ll call Group 1 models.

Group 1 Models
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Group 1 Models – 4 Key Assumptions

Our Group 1 models carry some baggage… Specifically four key 
assumptions:

• Independent observations
• Constant variance a.k.a homoskedasticity, a.k.a. homogeneity
• Fixed x: no measurement error in our predictor variables
• Normality: normality refers to the model residuals

In addition, Group I requires that our models be linear in the parameters
and have a response on a continuous scale.
The extended models can deal with different violations of these 
assumptions and requirements.
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• Under repeated sampling, data would be 
normally distributed at each x.

• Normally distributed around each predicted 
value in the deterministic model.

• This assumption is often misunderstood to mean 
that the values for each variable in a data set 
must be normally-distributed by themselves.

• But what is a residual?
• The differenced between a predicted and 

observed value

[Residual] Normality Assumption
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•Salamander breeder 
dispersal data

•What kind of model 
should we fit?

•A Ricker curve might be a 
good choice.

Model Residuals
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Model Residuals
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The Data A Fitted Ricker Curve



Model Residuals
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The Predicted Values And…The Residuals!



• Group 1 models assume that 
residuals are Normally 
distributed

[Residual] Normality Assumption
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• This does not mean that ‘the 
data are normally 
distributed’.
• Usually, the data points 

themselves aren’t Normally 
distributed.

• This is a frequent point of 
confusion.

[Residual] Normality Assumption

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 13



[Residual] Normality Assumption

y

Fr
eq

ue
nc

y

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 14

The following data look relatively well-behaved, but the histogram of the y-values suggests 
non-normality. A Shapiro test provides evidence of non-normality with p = 0.007.



[Residual] Normality Assumption
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We really care about the normality of the residuals from a model.
A Shapiro test on the residuals suggests normality with p = 0.833.



Homogeneity Assumption

Key points of the assumption:
• The stochastic model is a Normal 

distribution.
• The spread parameter, 𝜎𝜎 is 

constant.
• In other words, the variability does 

not depend on the value of x
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The homogeneity assumption requires constant variance along the entire range of predictor 
values.



Heterogeneous REsiduals

Heterogeneous residuals
• The spread parameter, 𝜎𝜎 is non-

constant.
• In other words, the variability 

depends on the value of x
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The homogeneity assumption requires constant variance along the entire range of predictor 
values.



Homogeneity Assumption
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Residuals of models of real data are often 
heterogeneous. We don’t like to see a megaphone shape
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Independent Observations Assumption

• Independent observation assumption 
key points:

• Sampling is randomized.
• Knowing something about 

observation 𝑥𝑥1 gives us no 
information about observation 𝑥𝑥2

• The joint probability of 
independent events is the product 
of individual probabilities.

• This is the basis for likelihood 
methods.

• Zuur, 2007:
• “The independence assumption 

means that if an observed value is 
larger than the fitted value (positive 
residual) at a particular X value, then 
this should be independent of the Y 
value for neighboring X values.”

• Non-independence can result from:
• Proximity in space or time
• Hierarchical structure
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Non-independence is one of the more challenging violations to deal with.



Fixed X Assumption

• Perfect accuracy in 
measurements of explanatory 
variables.

• This assumption is frequently 
violated

• It’s OK-ish if the noise in the 
predictor variables’ 
measurement is small relative 
to the noise in the response.
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We often forget about the fixed-x assumption.



Regression Concepts 2
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Key Concepts

•The regression equation
•Model coefficients and ANOVA (we’ll talk 
much more about these)

•What is the constellation of methods?
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• Independent observations
• Constant variance a.k.a homoskedasticity, a.k.a. 

homogeneity
• Fixed x: no measurement error in our predictor 

variables
• Normality: normality refers to the model 

residuals

• These assumptions apply 
to all of the Group 1 
models we’ll consider.

Group 1 Models – 4 Key Assumptions Recap
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Regression Equation

• The basic regression equation can 
be expressed in several ways:

𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1 + 𝜖𝜖1

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝜖𝜖1

𝑌𝑌 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝛼𝛼 + 𝛽𝛽𝛽𝛽,𝜎𝜎)

• Intercept: “The value of the 
response when the predictor is 
zero”

• The intercept often occurs 
outside the range of our data: it 
is an exptrapolation.

• Slope parameters: “For each 1-unit 
change in 𝑥𝑥, we expect a 𝛽𝛽1 change 
in the value of 𝑦𝑦 (on average).”
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We can express the dual model compactly 
with a regression equation. Regression parameter interpretation



Parameter Interpretation

A linear regression of penguin flipper length and body mass:

(𝐹𝐹𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁 𝑁𝑁𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙ℎ) = 136.7 + 0.015 × (𝑏𝑏𝑁𝑁𝑏𝑏𝑦𝑦 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚)
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Overall Model Standard Deviation

Recall the basic regression equation:
𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1 + 𝜖𝜖1

We might ask: what is the overall model standard deviation?
• By that, we mean: what is the standard deviation of the residuals:

𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
1

𝑙𝑙 − 2
�
𝑖𝑖=1

𝑛𝑛

𝐹𝐹𝑖𝑖2

Why n-2?
• We lose one degree of freedom for each parameter we estimate.
• We estimated two model parameters: 𝛼𝛼 and 𝛽𝛽1.
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A Tale of Two Tables - Preview

Two questions we might ask of a 
regression model:
1. What is the magnitude of the 

relationship between predictor 𝑥𝑥1
and response 𝑦𝑦?
• The model coefficient table tells us 

the direction and magnitude of the 
association between predictor and 
response.
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Model Coefficients and the ANOVA Table



A Tale of Two Tables - Preview

Two questions we might ask of a 
regression model:
2. How much of the variability in the 

model does predictor 𝑥𝑥1 explain?
• The Analysis of Variance (ANOVA) 

table tells us the relative 
importance of the various 
predictors to the overall model.
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Model Coefficients and the ANOVA Table



• How do we know that we have chosen the best
model?

• Did we include the right predictors?
• Did our algorithm find the best parameter 

values?
• How well does our model fit the observed data?
• How well does our model predict new data?
• Does our data/model meet assumptions?
• Are the assumption violations acceptably small?

Model Diagnostics, Validation, and Selection
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There are Many Types of Models: The Constellation

Bolker: Ecological Models and Data in R, Figure 9.2
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There are Many Types of Models: The Constellation

• Many of the models beyond Group 1 were developed 
to handle violations of one or more of the Group 1 
required assumptions.

• We’ll spend most of our time on Group 1 models:
• Easiest to understand, many principles transfer to 

other models.
• Easiest to implement and interpret
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Key Concepts

•The regression equation
•Model coefficients and ANOVA (we’ll talk 
much more about these)

•What is the constellation of methods?
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Group 1: General Linear Models
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What’s in This Section?

Take-Home Concepts
• What makes a model linear?

• Linear in the parameters
• Categorical and continuous predictors.
• Group 1 responses are always continuous
• Key assumptions of general linear models.
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There are Many Types of Models: The Constellation

Bolker: Ecological Models and Data in R, Figure 9.2
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Group 1 Models – 4 Key Assumptions

Our Group 1 models carry some baggage… Specifically four key 
assumptions:

• Independent observations
• Constant variance a.k.a homoskedasticity, a.k.a. homogeneity
• Fixed x: no measurement error in our predictor variables
• Normality: normality refers to the model residuals

In addition, Group I requires that our models be linear in the parameters
and have a response on a continuous scale.
The extended models can deal with different violations of these 
assumptions and requirements.
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Group 1: General Linear Models

Four key assumptions:
• Normality: normality refers to the 

model residuals
• Constant variance a.k.a

homoskedasticity, a.k.a. 
homogeneity

• Independent observations
• Fixed x: no measurement error in 

our predictor variables

Group 1 requirements:
• Group 1 models are linear in the 

parameters
• Group 1 models have a single 

continuous response variable
Terminology

• Response: Y
• Predictor(s): X
• Intercept: alpha
• Slope(s): beta
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Group 1: Types of models

Group 1 methods are essentially variations on linear 
regression.

• T-Test Simple Linear Regression
• 1-Way ANOVA
• Multiple Linear Regression
• n-Way ANOVA
• ANCOVA
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Group 1: general equation format

• Element-by-element form:

𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖+. . . +𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛𝑖𝑖 + 𝜖𝜖𝑖𝑖

• Matrix/Vector form:

𝑌𝑌 = 𝛼𝛼 + 𝛽𝛽1𝑿𝑿𝟏𝟏 + 𝛽𝛽2𝑿𝑿𝟐𝟐 + … + 𝛽𝛽𝑛𝑛𝑿𝑿𝒏𝒏 + 𝜖𝜖
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Group 1: Distribution Format

We can also write the equations as:

y~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝛼𝛼 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2+. . . +𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛,𝜎𝜎)

This format emphasizes the normality assumption of the residuals.
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Linear in the Parameters

Linearity in parameters means that in the deterministic 
functions, the model coefficients can only have 
multiplicative relationships to the predictor variables.

• It will help to dissect some regression equations to 
identify variables, coefficients/parameters, and 
constants.

The classic simple linear regression equation: 
𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥 + 𝜖𝜖
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Linear in the Parameters

This model is linear in the parameters: 𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥 + 𝜖𝜖
Things to note:

• x and y correspond to our observations. They are 
not estimated.

•𝛼𝛼 and 𝛽𝛽 are the model coefficients, i.e. parameters. 
They are the quantities we want to estimate.

•𝛽𝛽 multiplies the predictor variable x.
• 𝜖𝜖 is the residuals, i.e. the stochastic model. For 

Group 1 this is the Normal distribution.
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Linear in the Parameters

This model is also linear in the parameters:
𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥1𝑥𝑥2 + 𝜖𝜖

Things to note:
• x and y correspond to our observations. They are 

not estimated.
•𝛽𝛽1 ,𝛽𝛽2 ,and 𝛽𝛽3 multiply the variables 𝑥𝑥1 and 𝑥𝑥2
• We used the product of the two predictors, 𝑥𝑥1 and 
𝑥𝑥2 as a third predictor.
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Linear in the Parameters

This model is not linear in the parameters:

𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥12 + 𝑁𝑁𝑥𝑥2
𝛽𝛽2 + 𝜖𝜖, Why not?

• The 𝛽𝛽1𝑥𝑥12 is ok. We’ve just used the square of the first 
predictor. It’s like a modification of a predictor. Imagine that 
we could create another predictor column called ‘sq’ in our 
data that contained the squares of 𝑥𝑥1.

• Even though 𝑥𝑥2 is not a linear function, the coefficient 𝛽𝛽1
multiplies the term.
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Linear in the Parameters

This model is not linear in the parameters:

𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥12 + 𝑁𝑁𝑥𝑥2
𝛽𝛽2 + 𝜖𝜖, Why not?

• The term 𝑁𝑁𝑥𝑥2
𝛽𝛽2 is not linear in the parameters. Why?

• The model coefficient 𝛽𝛽2 does not multiply the predictor 
𝑥𝑥2 ,but rather it is an exponent.

• The constant 𝑁𝑁 multiplies 𝑥𝑥, but it is not a model 
coefficient estimated that is estimated from the data.
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Linear in the Parameters

It seems weird that we can say 𝛽𝛽1𝑥𝑥12 is linear and 𝑁𝑁𝑥𝑥2
𝛽𝛽2 is not.

• Both are nonlinear expressions.
• However, in the first term we are raising 𝑥𝑥1 to a constant.

• The constant, 2, is not estimated from the data 
therefore it is not a model coefficient.

• In the second term, we have specified a model coefficient
as an exponent.

• Since the coefficient does not multiply but rather 
exponentiates the predictor it is not linear in the 
predictors.
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Palmer Penguin Data

We’ll use the Palmer Penguin dataset to illustrate group 1 
methods

• Dr. Kristen Gorman and the Palmer Station Long Term 
Ecological Research (LTER) Program.

• 3 Penguin species in the Palmer Archipelago
• size measurements: 4 continuous variables
• species, island, and sex: categorical - nominal scale

• R package palmerpenguins
https://education.rstudio.com/blog/2020/07/palmerpenguins
-cran/
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Palmer Penguins
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Palmer Penguins – Graphical Exploration
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Tests For Differences: 2 Samples
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Group 1: T-tests

• t-test
• Simple Linear Regression
• 1-Way ANOVA
• Multiple Linear Regression
• n-Way ANOVA
• ANCOVA

T-tests are appropriate with
• One categorical predictor with 1 or 2 

levels
• One continuous response

T-tests analyze the following questions:
• Is the mean of one group different 

from a fixed value?
• Are the means of two groups different 

from each other ?

An elaboration of the t-test:
• 1-way ANOVA extends t-test to 3 or 

more groups.
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What’s a T-Test?

The problem: we want to know if 
the means of two groups of 
observations are different.

What could we do?
• Compare means the means of 

the two groups?
• How could we assess 

significance?
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What’s a T-Test?

A t-test tests the null hypothesis that the two groups of 
observations were drawn from the same population.
• The alternative hypothesis is that they were drawn from 

different populations.
• We use measures of center and spread to calculate a t-statistic:

For 1 sample: 𝒕𝒕 = �̅�𝑥1−𝝁𝝁
𝒔𝒔/√𝒏𝒏

For 2 samples: 𝒕𝒕 = �̅�𝑥1−�̅�𝑥𝟐𝟐

𝒔𝒔𝟏𝟏
𝟐𝟐

𝒏𝒏𝟏𝟏
+
𝒔𝒔𝟐𝟐
𝟐𝟐

𝒏𝒏𝟐𝟐
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What’s a T-Test?

Large t-values support the alternative hypothesis
Small t-values support the null hypothesis

𝒕𝒕 = �̅�𝑥1−�̅�𝑥𝟐𝟐

𝒔𝒔𝟏𝟏
𝟐𝟐

𝒏𝒏𝟏𝟏
+
𝒔𝒔𝟐𝟐
𝟐𝟐

𝒏𝒏𝟐𝟐
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What factors contribute to the t-value?
• Difference in means: large difference = larger t-value
• Sample variances: small variance = larger t-value
• Sample sizes: larger sizes = larger t-value



T-test: Samples

There are 1- and 2-sample versions of the t-test:
• 1-sample compares the mean of a group of measurements to a fixed 

value.
• 2-sample compares the means of two groups of measurements
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T-test: Tails 

Specifies a directional alternative 
hypothesis:
• “Chinstrap penguins weigh more than 

Adelie penguins.”
• You have to specify ahead of time.  

Usually requires prior knowledge or 
experience.

• Smaller critical t-values

Specifies a non-directional alternative 
hypothesis:
• “Chinstrap and Adelie penguins have 

different body masses.”
• More general than the 1-tailed, you 

don’t need any prior knowledge.
• Higher critical t-values.
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Critical Values and Rejection Regions

• Critical t-values are determined by the 
significance level (alpha) and the 
degrees of freedom.

• Critical difference is the difference in 
means corresponding to the critical t-
values.

• Rejection regions are in the tails of the 
distribution.

• If the observed difference in means is 
greater than the critical difference, it 
falls within the rejection region.
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Critical Values and Rejection Regions
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Tell UMass to Pledge to Reduce Plastics!

Scan to SIGN THE PETITION 
for UMass to join the 
Plastics Reduction Partner 
Certification

Become a Plastics Reduction Partner

Scan to HELP DECIDE 
WHICH PRIORITIES 

UMass should focus on 
for reducing plastics on 

campus

The Plastics Reduction Partner Pledge & 

Certification calls on institutions to reduce their 

dependence on plastics by making actionable 

commitments across four categories (awareness, 

behavior change, operational change, & 

demonstrating leadership). Tell UMass this is 

important to you!



What could a t-test tell us about the penguins?

Hint: What are the 
categorical predictors?
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• Rejection region is a single 
tail.

• Critical difference is about 
900g.

1-tailed Test: Gentoo are heavier

0e+00
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4e-04

6e-04
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-1000 0 1000
difference in body mass: Gentoo - Adelie

One tailed alternative: Gentoo are heavier
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• Rejection regions in both 
tails.

• Critical difference is about 
950g.

2-tails: masses are different

0e+00

2e-04

4e-04

6e-04

8e-04

-1000 0 1000
difference in body mass: Gentoo - Adelie

Two-tailed alternative: The masses are different.
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Remember To Test Your Assumptions

4 Key assumptions:

1. Normality: normality refers to the model residuals
2. Constant variance a.k.a homoskedasticity, a.k.a. 

homogeneity
3. Independent observations
4. Fixed x: no measurement error in our predictor variables

We’ll test the first 2
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Testing Assumptions: Normality

Shapiro test: most common normality test.
• Null hypothesis: data are normal
In R: shapiro.test():
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Testing Assumptions: Equal Variance

• We can use the Bartlett test
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Testing Assumptions: Equal Variance

T-tests are robust to 
heterogeneity
• ANOVA is not!
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Adélie Chinstrap
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T-test Adelie and Chinstrap Penguins

• Do the two groups seem different?
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T-test Adelie and Chinstrap Penguins
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T-test Adelie and Gentoo Penguins

• Do the two groups seem different?
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T-test Adelie and Chinstrap Penguins
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Nonparametric Alternative: Wilcoxon Test

• If our assumptions aren’t met, we can use a non-parametric alternative: 
the Wilcoxon test. 

• Also known as the Mann-Whitney U test.
• Syntax is very similar to t.test() in R
• Function is wilcox.test()
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Wilcoxon Test Syntax
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Group 1: Simple Linear Regression

• t-test
• Simple Linear Regression
• 1-Way ANOVA
• Multiple Linear Regression
• n-Way ANOVA
• ANCOVA

SLR Requires:
• One continuous response
• One continuous predictor
• What questions could we 

address in the penguin 
data?
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Simple Linear Regression elaborations

1.Multiple linear regression: More than one 
continuous predictors

2.ANOVA: One categorical predictor (instead of 
continuous)

3.ANCOVA: Mixture of categorical and continuous 
predictors
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The Cars Dataset

Simple Linear Regression: 
Example



• The cars data set contains speed 
and stopping distance observations 
from 50 trials.

• The goal was to quantify the 
relationship between driving speed 
and stopping distance.

Example simple regression: Cars data
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Cars: Fitting a Model

• Which variable is the predictor?
• Which is the response?
• We can fit a simple linear model:

fit_cars = lm(dist ~ speed, data = cars)

We can use abline()
to plot the regression
line.
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Cars Model: What can we learn from the 
coefficient table?

Model Formula

Residuals summary – we’ll 
learn more about this later

Model Coefficients

Amount of 
variation 
explained by 
the model



Example simple regression: Cars data

Let’s translate the model coefficients to English. You can uses the 
coefficients() function in R to retrieve just the regression 
coefficients, without all of the information from the full summary:
coefficients(fit_cars)
(Intercept)       speed 
-17.579095    3.932409 
• The intercept is about -17.6.

• What does that mean, is it sensible?
• How could you translate the speed coefficient (3.9) into an English sentence?

• The R2 was 64%: That means the model explains about 64% of the 
variation in the response. 

• Is that a lot?  Is it a good model? What is the other 36%?



Let’s translate the model coefficients to English. You can uses the 
coefficients() function in R to retrieve just the regression 
coefficients, without all of the information from the full summary:
coefficients(fit_cars)
(Intercept)       speed 
-17.579095    3.932409 
• The intercept is about -17.6.

• What does that mean, is it sensible?
• How could you translate the speed coefficient (3.9) into an English 

sentence?
• “For each 1-mph increase in speed, it takes about 4 additional feet to stop”.

Example simple regression: Cars data



Cars Model: Regression Equation

• We can build the regression equation from the model coefficient 
output from R:

𝑏𝑏𝐹𝐹𝑚𝑚𝑙𝑙𝑁𝑁𝑙𝑙𝑑𝑑𝐹𝐹 = −17.6 + 3.9 × 𝑚𝑚𝐹𝐹𝐹𝐹𝐹𝐹𝑏𝑏

• How does this help us?
• One way we can use regression equations is for prediction.

• Given our regression equation
• 𝑏𝑏𝐹𝐹𝑚𝑚𝑙𝑙𝑁𝑁𝑙𝑙𝑑𝑑𝐹𝐹 = −17.6 + 3.9 × 𝑚𝑚𝐹𝐹𝐹𝐹𝐹𝐹𝑏𝑏
• we could calculate an expected stopping distance for any 

possible speed.



Cars Model: Regression Equation

We could do the calculation by hand, but fortunately R has a built-in function to 
use a model fit object to obtain predicted values.
• Perhaps counter intuitively, this function is called predict().
• predict expects a data frame with a columns for each of the model 

predictors. In the cars model we had only one predictor: speed.
• We could calculate the expected stopping distance for a car travelling at 34 

mph:

predict(fit_cars, newdata = data.frame(speed = 34))
1 

116.1228 



Regression Equation: Driving at 450 mph

What about a car traveling at 450 mph?

predict(fit_cars, newdata = data.frame(speed = 450))

1 
1752.005 

The equation predicts that you would need about 1/3 mile to stop.



Regression Equation: Stopped Car

A stopped car (0 mph) would need:

predict(fit_cars, newdata = data.frame(speed =
0))

1 
-17.57909 

• Any potential issues with these predictions?
• Does that mean our model is bad?
• Is this value familiar to us from the model coefficient table?



Take another look at a plot of the data and the model fit:

plot(dist ~ speed, data = cars, main = "Cars Data", 
xlim = c(0, 26), ylim = c(-20, 124))

abline(fit_cars)

0 speed is outside the range of our observations! It’s an extrapolated value!
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Group 1: 1-Way Analysis of Variance

• t-test
• Simple Linear Regression
• 1-Way ANOVA
• Multiple Linear Regression
• n-Way ANOVA
• ANCOVA

ANOVA: Categorical predictor, 3 or 
more levels

• Continuous response
• Like an extended t-test

Analyzes the following questions:
1.Are the group means different 

from one another?
• Note: ANOVA does not specify 

which pairs of groups are different 
from one another.
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What could a 1-way ANOVA tell us about the penguins?
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What were the categorical 
variables?

• Sex
• Species
• Island



ANOVA elaborations

Two or more categorical predictors: multi-way ANOVA 
Categorical and continuous predictors: Analysis of Covariance 
(ANCOVA)
Post ANOVA analysis: which groups are different from one 
another?

• Tukey Honest Significant Difference (HSD) test
• Pairwise tests between all factor levels.

• number of pairs gets large very quickly!
• Correction for multiple testing: Bonferroni, etc.
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Group 1: Multiple Linear Regression

• t-test
• Simple Linear Regression
• 1-Way ANOVA
• Multiple Linear Regression
• n-Way ANOVA
• ANCOVA

A multiple linear regression model has:
• One continuous response
• Two or more continuous predictors

The model attempts to quantify the 
pairwise relationships between each 
predictor and the response - combined 
effect of 2 or more predictors on the 
response
Multiple regression can fail with highly 
correlated predictors: collinearity and 
multicollinearity.
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Group 1: Multiple Linear Regression

• t-test
• Simple Linear Regression
• 1-Way ANOVA
• Multiple Linear Regression
• n-Way ANOVA
• ANCOVA

Multiple regression elaborations:
• Mixture of categorical and 

continuous predictors:
• Interaction terms: synergistic 

effects of two or more predictors.
• Analysis of Covariance (ANCOVA)
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Group 1: Multiple Linear Regression

• t-test
• Simple Linear Regression
• 1-Way ANOVA
• Multiple Linear Regression
• n-Way ANOVA
• ANCOVA

What can it tell us about the 
penguins?
• What were the continuous predictors?

• flipper length, bill measurements, 
body mass.

• Could we use these three continuous 
variables to predict the species?

• Hint: no! Group 1 methods require 
a continuous response!
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Group 1: Multi-Way ANoVA

• t-test
• Simple Linear Regression
• 1-Way ANOVA
• Multiple Linear Regression**
• n-Way ANOVA
• ANCOVA

Categorical analogue of multiple 
regression

• Main effects
• Interactions

What could we ask with the 
penguin data?

• Categorical variables: island, sex
Elaboration: Mix of categorical and 
continuous variables Analysis of 
Covariance (ANCOVA)
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Group 1: Analysis of Covariance

• t-test
• Simple Linear Regression
• 1-Way ANOVA
• Multiple Linear Regression**
• n-Way ANOVA
• ANCOVA

ANCOVA combines categorical and 
continuous data:

• A mix of categorical and 
continuous predictors

• Continuous response
What could we ask with the 
penguin data?

• Categorical variables: island, sex
• Continuous variables: flipper 

length, bill dimensions, body mass
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When do group 1 methods start to fail?

Violations of our key assumptions:
• Independent observations:

• Problems with likelihood: inflated confidence
• Constant variance a.k.a homoskedasticity, a.k.a. 

homogeneity.
• Inaccurate measures of confidence/significance

• Fixed x: no measurement error in our predictor variables
• Normality: normality refers to the model residuals
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When do group 1 methods start to fail?

[Multi]Collinearity
• If two predictors are correlated they contain redundant 

information.
• How does a model know which predictor should get the 

credit?
• Detecting collinearity between two variables is easy: just 

calculate the correlation coefficients
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When do group 1 methods start to fail?

[Multi]Collinearity
• Multi-collinearity: complex correlational structures can exist 

among 3 or more variables.
• Pearson/Spearman correlation coefficient is only for 2 

variables.
• Multicollinearity is hard to detect.
• It causes ‘unstable’ coefficients: coefficients can change 

drastically when one observation is removed.
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Key Concepts

• What makes a model linear? Linearity in the 
parameters.

• Categorical and continuous predictors.
• Key assumptions of general linear models.

• When can they fail?
• Classes of Group 1 models
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Correlated Predicctors

Correlated Predictors: Collinearity



Spring 2022 Intro Quant Ecology 99

The whitebark pine, Pinus 
albicaulis is a high-altitude 
tree that grows in 
montane habitats in 
Western North America.

Richard Sniezko, US Forest Service 
- Forest Service Dorena lab

Whitebark Pine: Background



Whitebark Pine: Modeling

Warmer winters in recent decades are associated with many plant and 
animal species shifting their ranges to higher altitudes.
The seeds of whitebark pine is an important food source for many animals, 
including black bears.
Plant pests, including the Mountain Pine Beetle Dendroctonus ponderosae
are also shifting their ranges, making novel (and susceptible) hosts 
available.
There is great interest in understanding, and predicting, how whitebark 
pine growth varies with altitude and temperature.
We could probably learn a lot by creating a regression model of pine 
growth predicted by average winter temperatures and altitude!



Whitebark Pine: Data

Suppose you have a dataset containing 
information about the size of individual 
trees dbh.

For each tree, you also know the 
altitude at which it grows, the man 
annual precipitation, and the mean 
annual temperature:

Do you think altitude and temperature 
are related?

head(dat_whitebark)

X rainfall altitude      dbh

1 1 20.44596 2493.433 47.08338

2 2 33.23555 2301.189 52.09458

3 3 31.15216 2328.082 51.69528

4 4 25.24166 2390.111 49.53393

5 5 29.35912 2227.444 51.96837

6 6 28.51941 2421.535 49.85675



Whitebark Pine: Scatterplots
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We know that they grow larger in 
warmer areas and at lower altitudes.
We can also see that altitude and 
temperature are strongly correlated in 
this pair plot:

Whitebark Pine: Correlated Predictors

altitude

-4
0

-3
0

-2
0

-1
0

0

1500 2500 3500

-40 -30 -20 -10 0

-0.60
temperature

15
00

25
00

35
00

-0.78

0.79

10 20 30 40

10
20

30
40dbh

Spring 2022 Intro Quant Ecology 103



Whitebark Pine: Simple Models

Call:

lm(formula = dbh ~ temperature, data = 
dat_whitebark_collinear)

Residuals:

Min      1Q  Median      3Q     Max 

-14.014  -3.183   1.095   3.618  10.786 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 47.08033    2.05861   22.87  < 2e-16 ***

temperature  1.02641    0.08136   12.62 1.06e-15 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 
' ' 1

Residual standard error: 5.881 on 41 degrees of freedom

Multiple R-squared:  0.7952,    Adjusted R-squared:  
0.7902 

F-statistic: 159.2 on 1 and 41 DF,  p-value: 1.057e-15

Call:

lm(formula = dbh ~ altitude, data = 
dat_whitebark_collinear)

Residuals:

Min      1Q  Median      3Q     Max 

-13.457  -5.829  -2.056   3.863  18.670 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 70.883870   6.053708  11.709 1.17e-14 ***

altitude    -0.015641   0.001964  -7.963 7.46e-10 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 
' ' 1

Residual standard error: 8.143 on 41 degrees of freedom

Multiple R-squared:  0.6073,    Adjusted R-squared:  
0.5977 

F-statistic: 63.41 on 1 and 41 DF,  p-value: 7.462e-10



Correlated Predictors: Multiple Regression

Call:

lm(formula = dbh ~ altitude + temperature, data = dat_whitebark_collinear)

Residuals:

Min       1Q   Median       3Q      Max 

-14.1944  -3.6237   0.4966   3.9435   9.1340 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 58.918987   4.301265  13.698  < 2e-16 ***

altitude    -0.005705   0.001865  -3.059  0.00395 ** 

temperature  0.790577   0.106972   7.390 5.39e-09 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.36 on 40 degrees of freedom

Multiple R-squared:  0.834, Adjusted R-squared:  0.8257 

F-statistic: 100.5 on 2 and 40 DF,  p-value: 2.527e-16
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Correlated Predictors: What happened?



• The coefficients changed. 
They are now obviously 
wrong!

• Significance changed: both 
are still significant, but p-
values are higher.



This seems very weird. 

Our 2-predictor model performed 
well for the fish/area/pesticide 
model.

Why did we have a problem?



Correlated Predictors: Collinearity

Collinearity: when two or more predictors are highly correlated with each other
• Highly correlated predictors contain the same information.
• Since they contain the same info, the model can’t determine which variable to attribute 

the effect to!
• The mathematical reasoning is that correlated predictors cause the design matrix to be 

less than full rank.
• Don’t worry if you don’t know what this means, it’s not essential for understanding the 

problem.

What to do?
• Examine a pair plot. Base R has the pairs() function. Package psych has a nice 

function called “pairs.panels()”
• Remove one of the highly correlated predictors.
• Check for variance inflation using vif()



Model Coefficients and the 
ANOVA Table
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What’s in This Section?

Take-Home Concepts
• Interpreting model coefficient tables for categorical variables
• Interpreting model coefficient tables for continuous variables
• Interpreting the ANOVA table
• Intro to dummy variables
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Group 1 model interpretation

Group 1 models are linear in the parameters
This makes the interpretation of model terms relatively easy.

• But note, there is still lots of complexity especially when we mix 
continuous and categorical terms and interaction terms.

Recall the basic equation:
𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2+. . . +𝜖𝜖

• When all of the predictor variables have a value of zero, we expect 𝑦𝑦
to have a value of 𝛼𝛼, on average.

• For every 1-unit change in 𝑥𝑥1 we expect a 𝛽𝛽1-unit change in 𝑦𝑦, on 
average.
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Group 1 model summary presentations

Table of model coefficients model summary.
• This table tells us the strength of effects of predictors, overall 

model significance test

ANOVA table.
• This table shows the model variability attributed to each 

factor, factor-specific significance tests
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Group 1 model interpretation

Intercept: What is the value of the 
response when the predictor has 
value zero?
Slope: What is the change in the 
response with each unit change in 
the predictor?
Standard Errors: shape of sampling 
distribution
F-test: overall model significance 
test

Degrees of freedom: Reflects the 
number of samples, number of 
factor levels, number of individuals 
per factor level etc.
Sum of squares: Reflects the total 
squared deviation from the mean 
explained by a source.
Mean squares: Mean Square due to 
a source (per DF)
F tests: Test for ratio of variability 
explained by a particular predictor 
variable

Model Coefficient Summary ANOVA Table
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ANOVA table vs. model coefficient table

1.Intercept and slope 
coefficients

2.Overall model significance 
test, correlation test

1.Variability explained by 
each factor in the model

2.Significance tests for each 
factor separately

Model coefficient table tells you ANOVA table tells you
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1-way ANOVA

When we have a continuous response and a single 
categorical predictor with 2 levels we can use a t-test.
What if there are 3 or more levels?

• The t-test is not enough.
• Analysis of Variance is a generalization of the t-test for 

3 or more groups.
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Model Coefficient Tables: Dummy Variables

When you fit a model using a categorical predictor with n levels, 
the algorithm first detects all of the factor levels present in the 
data, then creates a set of n - 1 dummy variables.

• The dummy variables allow the model-building process to 
treat each factor level as if it were a separate, numerical 
predictor that can take on only values of zero or one.
species speciesGentoo speciesChinstrap

Adelie 0 0

Gentoo 1 0

Chinstrap 0 1
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Model Coefficient Tables: Interpretation for 
Categorical Predictors

Since each factor level is treated as a predictor variable, 
there will be slope parameters for each.
When R builds a model, it selects one of the factor levels 
to serve as the base case.

• When the model contains only categorical variables, the 
base case is analogous to the intercept term in a model, 
i.e. the 𝛼𝛼.

It’ll be easier to understand with an example.
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The procedure for conducting 
an ANOVA in R is:

• Create a linear model fit 
with lm().

• Use anova() to perform 
the Analysis of Variance 
and print the ANOVA 
table.

Recall that ANOVA is really a 
just a different way of looking 
at a linear model.

• To better understand the 
relationship, we’ll focus 
on the model coefficient 
table first:

1-way ANOVA: Palmer Penguins
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Factor Base Cases

There are slopes for Chinstrap and Gentoo, but where 
is the Adelie coefficient?

• Recall: the base case is the intercept in a 1-way 
ANOVA.

R assigned “Adelie” to be the base case.
• Notice how R formats the factor-level coefficient 

names:
• the variable name prepended to the factor level.
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Interpreting the Coefficient Table

• Mean Adelie penguin mass is 3700 grams
• Mean Chinstrap penguin mass is 3700 + 32 

grams
• Mean Gentoo penguin mass is 3700 + 1375 

grams
Everything is relative to the base case!
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Interpreting the Coefficient Table

• The intercept is 3700 grams: Adelie penguins 
weigh 3700g, on average

• The regression slope for Chinstrap is 32 grams per 
unit.

• Adding one ‘Chinstrap penguin unit’ increases the 
penguin mass by 32 grams, on average.

• The regression slope for Gentoo slope 1375 grams
• Adding one ‘Gentoo penguin unit’ increases the 

penguin mass by 1375 grams, on average.

Everything is relative to the base case!
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Interpreting the Coefficient Table

We can obtain the mean masses of each species from 
the model coefficient table.

• Mean Chinstrap penguin mass
• 3733 = 3701 + 1 × 32 + 0 × 1375

• Mean Gentoo penguin mass:
• 5076 = 3701 + 0 × 32 + 1 × 1375
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Dummy Variables

If we consider 𝑥𝑥𝑐𝑐ℎ𝑖𝑖𝑛𝑛 a dummy variable which is equal to 1 if the 
observation is a Chinstrap penguin and 0 otherwise, and likewise 
for 𝑥𝑥𝑔𝑔𝑚𝑚𝑛𝑛𝑔𝑔𝑚𝑚𝑚𝑚 we could write the regression equation symbolically 
as:

𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚 + 𝛽𝛽𝑐𝑐ℎ𝑖𝑖𝑛𝑛 × 𝑥𝑥𝑐𝑐ℎ𝑖𝑖𝑛𝑛 + 𝛽𝛽𝑔𝑔𝑚𝑚𝑛𝑛𝑔𝑔𝑚𝑚𝑚𝑚 × 𝑥𝑥𝑔𝑔𝑚𝑚𝑛𝑛𝑔𝑔𝑚𝑚𝑚𝑚

What would the coefficient table and equation look like if 
Chinstrap penguins were lighter than Adelie penguins?
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1-way ANOVA: ANOVA Table

We have examined the model coefficients and calculated the group 
means.

• The masses seem pretty different, but how could we assess the ANOVA 
alternative hypothesis?

• “The body masses of penguins for at least one species are different from the masses 
of the other species”

## Analysis of Variance Table

## 

## Response: body_mass_g

##            Df Sum Sq  Mean Sq F value    Pr(>F)    

## species     2 146864214 73432107  343.63 < 2.2e-16 ***

## Residuals 339  72443483   213698                      

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 125



1-way ANOVA: Model Coefficient Table

What can we learn from the model coefficient table?
The intercept and speciesGentoo coefficients have low p-
values, but that’s not exactly what we wanted to know!

• We wanted to know about the penguin species in general.
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1-way ANOVA: ANOVA Table

The ANOVA table gives us a clue
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Model Coefficients and ANOVA Provide 
Complementary Information

We’ll cover model coefficient interpretation, and the ANOVA table details 
in greater depth, but for now you should notice:
• Model slope/intercept coefficients: there is one coefficient for each 

factor level of a categorical predictor.
• The intercept coefficient corresponds to the base case.
• Model coefficient table characterizes the strength and significance of 

individual intercept and slope coefficients.
• It does not tell us about the overall significance of the categorical predictor.

• The ANOVA table evaluates the ANOVA null hypothesis.
• It does not tell us which factor levels are different
• The two tables each provide part of the picture.

Neither the model coefficient table nor the ANOVA table tell us if a 
particular pair of factor levels are significantly different form one another!
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Model Coefficients and ANOVA Provide Complementary Information

Neither the model coefficient table nor the ANOVA 
table tell us whether a particular pair of factor levels 
are significantly different form one another!

• This is the realm of post-hoc testing.
• Post-hoc testing is an analysis you perform after 

(post) you perform the initial analysis (hoc).
• The Tukey Honest Significant Difference is a 

common post-hoc method.`
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Key Concepts

• Interpreting model coefficient tables for categorical 
variables

• Interpreting model coefficient tables for continuous 
variables

• Interpreting the ANOVA table
• Intro to dummy variables
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Board Model Art
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• Predictor variable 
adds one unit of 
Gentoo

• The coefficient is 
1375

• One-unit increase in 
Gentoo corresponds 
to a 1375-unit 
increase in body mass

Dummy Variable 
Interpretation



In-Class t-tests
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