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Least Squares
A Parametric Frequentist Approach
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What’s in This Section?

• Dual model paradigm
• Optimization criterion
• Parametric and nonparametric 

inference
• Least squares and likelihood
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Linear Model - Basics
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• 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∗ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝜖𝜖
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Linear Function of Data Linear Model Equation



McGarigal’s organization of the materials

McGarigal separated the OLS and Likelihood materials
• OLS is an optimization paradigm: minimize the sum of squared 

deviations (residuals).
• Likelihood is an optimization paradigm: choose model parameters 

that maximize the likelihood of the observed data.

For general linear models: they are equivalent. This is not 
necessarily the case for other model types.

𝑦𝑦0 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝜖𝜖1
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Dual-modeling approach: Linear Model

Linear model formula
𝑦𝑦0 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝜖𝜖1

Can be decomposed:

Deterministic linear model: 𝑦𝑦0 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1

Stochastic model of the errors: 𝜖𝜖𝑖𝑖
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Dual-model: Parametric and Non-Parametric

Deterministic and stochastic
• Linear model: 𝑦𝑦0 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1
• Stochastic model, errors: 𝜖𝜖𝑖𝑖

Deterministic Model: parametric and nonparametric are 
equivalent

Stochastic Model:
• Nonparametric modeling: The errors, 𝜖𝜖𝑖𝑖, exist
• Parametric modeling: The errors, 𝜖𝜖𝑖𝑖, exist AND we propose they are 

normally-distributed.
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Deterministic Model

• For both types (parametric and non-parametric) the 
deterministic model is the same:

𝑦𝑦0 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝜖𝜖1
• We propose that linear function describes the deterministic 

component of the system.
• NOTE: we could propose other deterministic models as well
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Non-Parametric Inference: Stochastic Model

We make no claim about how the data are distributed in the 
population

• We propose that the stochastic model is: 𝜖𝜖1.  We do not propose a 
particular distribution.
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Parametric Inference: Stochastic Model

We propose that the stochastic component, 𝜖𝜖𝑖𝑖 of the system 
can be adequately described by a parametric distribution.

• We propose the stochastic model is 𝜖𝜖1, and that it is described by a 
parametric distribution.  We frequently use a Normal distribution.

We want to optimize the fit of our deterministic model
• Since we’ve proposed that a parametric distribution describes the 

stochastic model, we can find model parameters that make our 
model the most likely.
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Parametric + Non-Parametric Optimization

We want to optimize the fit of our deterministic model for both 
types, but to do so we need to the noise…
• Non-Parametric: what are our options?

• Least Squares as our optimization criterion! It doesn’t assume any 
particular distribution. 

• Simulation?
• Parametric: we are willing to assume a distribution, what are 

our options?
• Least squares or simulation?  No distributional assumptions
• Likelihood methods: we assume an error distribution
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Simple Optimization: the Mean

The mean is a statistic that describes the center of data.
What properties would we like a measure of center to 
have?
• Lie between the minimum and maximum?
• Have equal counts of values above and below?
• Minimize the sum of residuals?
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Least Squares

•Minimize the squared 
differences between 
observed and expected 
values.

•Minimize the squared 
residuals, a.k.a. errors

• Squared difference between 
mean and observed.

The Idea Optimization criterion

Square these
distances
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Simple Optimization: the Mean

The mean optimizes 2 criteria:
• The sum of residuals is zero
• The sum of squared residuals is minimized

Prove it to yourself with some data:
dat = rbeta(100, 0.3, 0.5)
mean_dat = mean(dat)
resids = dat - mean_dat
resids_2 = dat - (mean_dat + 0.01)
resids_3 = dat - (mean_dat - 0.01)
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OLS: Optimizing Regression Parameters

Ordinary Least Squares is a great way to find optimal
parameters for the simple linear regression models:

𝑦𝑦1 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝜖𝜖𝑖𝑖
• The parameters are 𝛽𝛽0 and 𝛽𝛽1.
• 𝑥𝑥𝑖𝑖 is a predictor variable
• 𝑦𝑦𝑖𝑖 is the response variable
• 𝑒𝑒𝑖𝑖 is the error term
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OLS: Optimizing Regression Parameters

NOTE: McGarigal separates OLS and Likelihood
• They are not always equivalent, but if you are willing to 

assume the errors 𝜖𝜖𝑖𝑖 are normally distributed, then OLS and 
Maximum Likelihood are equivalent for linear regressions.

• OLS doesn’t work for logistic regression, for example.
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OLS: Optimizing Regression Parameters

The optimization procedure:

1.Specify a model
2.Find model parameter values that minimize the sum 

of squared residuals via:
• Numerical optimization
• Analytical methods
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Numerical Estimation
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Numerical Estimation and Analytical Solutions

Procedure for numerical methods:
• Specify starting values for parameters
• Search parameter space for optima

• Algorithms, e.g. Newton’s method
• Simulation/resampling techniques, 

e.g. MCMC, gradient descent, 
machine learning techniques

Exact solutions exist for OLS 
optimization for many regression 
techniques (like general linear models).
• Solutions are based on techniques 

from Linear Algebra:
• Matrix multiplication, inversion, 

transpose, etc.
• Computers are really good at these 

operations.

Numerical Methods: [educated] trial-
and-error

If we are lucky, a closed-form, 
analytical solution exists!
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Least Squares and Parametric Inference

We propose that a parametric distribution is appropriate for the 
stochastic model.

• Theoretical distributions are defined by density or mass functions.

• We want to optimize parameters in the context of the PDF/PMF.
• We want parameters that make the observed data the most likely

For Normally-distributed errors: OLS methods also optimize for 
likelihood!

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 27



Recap Concepts

• Dual model paradigm
• Optimization criterion
• Parametric vs nonparametric stochastic models
• Least squares and likelihood
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Likelihood
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What is Likelihood?
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• In a statistical inference context, likelihood 
is related to the probability of observing a 
specific event, 𝑥𝑥𝑖𝑖 ,given a probability 
distribution and a set of parameters.

• We can use probability distribution 
functions to calculate the likelihood of 
specific events.

• The likelihood of an event is proportional 
to probability mass or density.



If we have more than one 
observation, the joint likelihood is 
the product of the probabilities of 
the individual events.
• Finally, we get to use the 

density function!
If the data were independently 
collected/observed.
• Remember independent events 

from probability theory?

Likelihood of Data:
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LL = -30.442

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 32



Likelihood: The scenario

Main question: How likely am I to have observed the data I 
collected under my proposed model?
Likelihood can help if you have:

1.Data
2.A proposed a distribution or model of the data
3.A set of candidate distribution/model parameters

For inference: it might seem reasonable to try to find the 
parameter values that make our observed data most likely.
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Maximum Likelihood

• Maximum likelihood method attempts to find the population parameters that 
make the observed data the most likely.
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Likelihood: independent samples

Since you are a whiz at designing experiments, you know that all 
of your samples are independent!

• What do we already know about the joint probability of multiple, 
independent events?

• The joint probability of observing multiple independent events is the 
product of the probabilities of the individual events.

• Likelihood is an estimate of how probable your particular data are 
given a model and a set of model parameters.

The overall likelihood is proportional to the product of the 
likelihoods of each observation given your model/parameters!
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Likelihood: data and model

How do we calculate the likelihood for a specific event or 
observation if we have a theoretical distribution?

• Use the height of a density/mass function.
How do we calculate the likelihood for an entire sample if we 
have a theoretical distribution?

• Multiply the density/mass of each observation.
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Likelihood: procedure

1.Collect data
2.Propose model and candidate parameter values
3.Calculate the probability density of each observation given your model and 

parameter values:
• From a theoretical distribution.
• From an empirical/resampled/simulated distribution

4.Multiply the densities.
• In practice we calculate the logarithm of the densities and add them 

together.
• Why might this be better than multiplying probabilities?

5.Voilà: your likelihood value for your data 𝑌𝑌 given your proposed model and 
parameter values: 𝛷𝛷𝑚𝑚

• In symbols 𝐿𝐿 𝑌𝑌|𝛷𝛷𝑚𝑚
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Likelihood calculations

In Maximum Likelihood inference we want to maximize 
the [log] likelihood of the parameters.
Wouldn’t it be nice if we had a simple formula?

• Sometimes we can find a formula and then find it’s 
minima/maxima via calculus.

• Frequently such formulas don’t exist.
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• one point: 𝑥𝑥 = 0.5
• Normal distribution, test 

values:
• 𝜇𝜇 = −0.5
• 𝜎𝜎 = 2.6

Likelihood Example Calculations
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• one point: 𝑥𝑥 = 0.5
• Normal distribution, test 

values:
• 𝜇𝜇 = .85
• 𝜎𝜎 = 2.6

Likelihood Example Calculations
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• Multiple points
• Normal distribution: 𝜇𝜇 = 1.5, 𝜎𝜎

= 2.6

Likelihood Example Calculations
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• Multiple points
• Normal distribution: 𝜇𝜇 = 0.5, 𝜎𝜎

= 2.6

Likelihood Example Calculations
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• Multiple points
• Normal distribution: 𝜇𝜇 = 0.5, 𝜎𝜎

= 4.6

Likelihood Example Calculations
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• Multiple points
• Normal distribution: 𝜇𝜇 = −3.5, 𝜎𝜎

= 3.2

Likelihood Example Calculations
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Key Concepts

• What is likelihood?
• How do we calculate it?
• What is maximum likelihood?
• Numerical and Analytical methods
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Resampling
Bootstrap and Monte Carlo Methods
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What’s in This Section?

• What is resampling?
• Sampling with replacement.
• Bootstrap and Monte Carlo 

randomization
• Resampling the null hypothesis
• Resampling the alternative hypothesis

• Resampling for the null (Monte Carlo) 
and alternative (Bootstrapping) 
hypotheses.

• Why sample with replacement?
• When is resampling useful?
• Breaking vs. retaining associations in the 

data.
• Labeled data.

Slides Take-Home Concepts
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What is resampling?

Resampling methods create new samples from our existing 
sample.

1. Resampling with replacement allows us to create many 
“new” data sets from our original that we can analyze.

2. It sounds like cheating, but….
1. Remember our random sampling scheme?
2. Nonparametric inference can’t help us if we use a 

poor sampling design.

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 48



What is resampling good for?

1. Nonparametric inference
2. Null and alternative hypotheses

1. Monte Carlo randomization helps us characterize the 
null hypothesis.

2. Bootstrapping is like the alternative hypothesis.
3. Confidence intervals

1. Especially helpful when we don’t want to claim the 
population follows a theoretical distribution
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Resampling x and y
1. Bootstrapping: samples entire rows of the data, preserves 

structure
• Keeps 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 together.
• Keeps all of the attributes of a sampling unit together
• Preserves associations among data columns (if they exist!)

2. Monte Carlo resampling: Sample predictor/response variables 
separately.
• Samples each column of the data separately.
• Can pair different x, and y values: e.g. 𝑥𝑥2 and 𝑦𝑦53.
• Jumbles attributes among sampling units.
• Destroys the associations among columns, removes the 

structure from data
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Bootstrap Resampling

Simple concept: randomly select entire rows of data with 
replacement from the original data set.
The new data sets may have some repeated observations, and 
some may be left out.

• There are many possible resamplings of the data.
• Many will resemble the original data.
• Due to sampling error, some resamplings will be very 

different than the original.
• Imagine rolling a 6 on a die 20 times out of 25.
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Bootstrapping uses

Estimate standard errors and sampling distributions.
• Remember SE is a parameter of the sampling 

distribution of a statistic, not the population 
distribution.

Estimate confidence intervals.
• Helpful with small samples when we don’t want to, or 

can’t, assume a theoretical distribution of the 
population and don’t want to rely on the Central Limit 
Theorem.

• Recall the Central Limit Theorem doesn’t always apply 
with less than 30 observations.
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Bootstrap pitfalls

Why don’t we always use bootstrapping (or other resampling 
techniques), instead of estimating parameters ?

• Bootstrap sampling distributions tend to be too narrow: 
narrowness bias.

• Bootstrap distributions won’t fix nonrepresentative or 
too-small samples.

• Bootstrap estimates of the median can be problematic.
• May be computationally intensive.
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Bootstrap Advantages

Conceptually simple, easy to implement, may be more 
intuitive than formulas for calculating standard errors:

• SE of the mean calculation is simple, but SEs of other 
statistics are much more complicated.

• Formulas for more than one predictor or response can 
be very complicated!

Can be used to illustrate concrete examples of theoretical 
principles:

• Bootstrapping is a good way to show how an empirical 
distribution compares to the theoretical.
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Confidence Intervals

Parametric slope/intercept CIs
• If we use parametric inference, we can often* find a 

closed form solution for parameter estimates and 
standard errors.

• However,… often cannot find analytical solutions for the 
models we actually want to use!

• For example, nonlinear models or other models with 
complicated structures.

• Bootstrapping can simulate a standard error for the 
alternative hypothesis.

• MC resampling can simulate a standard error for the null.
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Monte Carlo Randomization

Resampling each column of the data separately.
• Creates new observations: combinations of x and y that 

weren’t in the observed data.
• Bill width of penguin #1 paired with bill depth of 

penguin #37.
• Breaks associations within sampling units:

• The flipper length of a large penguin might be paired 
with the body mass of a small penguin.
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Monte Carlo Randomization and the Null Hypothesis

The null hypothesis is that predictors and responses vary independently.
• There is no coordinated variation between x and y.

• Large values of x are equally likely to be paired with large or small 
values of y.

Monte Carlo randomization destroys within-row associations thereby 
simulating the null.

• MC resampled data are what we could observe if the null hypothesis 
were true.

• But remember that sampling error can result in unrepresentative 
samples in which strong associations are estimated by chance alone.
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Resampling Examples: The Penguin Data - Categorical

Consider penguin species, a categorical predictor, and flipper length, a 
continuous response:
What are null and alternative hypotheses?
Null: there is no association between penguin species and flipper 

size.
• Flipper size does not vary among species.

Alternative: Flipper size differs between at least one pair of penguin 
species.

• If we have more than 2 species, we might not expect all species 
to be different.
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The flipper lengths, segregated by 
species.

• Think of the species ID as a label as an 
associated measurement.

Groups look well-separated.

Resampling Examples: The Penguin Data - Categorical
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Resampling Examples: The Penguin Data - Categorical

It looks like Gentoo penguins have long 
flippers, while Adelie and Chinstrap 
penguins have shorter flippers.

• Could the apparent differences be 
due to sampling error?

We could perform some MC resampling 
to see how often we observe a pattern 
like what we see in the original data.
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Let’s randomly assign species to flipper 
lengths:
• The medians are still slightly different, 

but there’s more overlap. Now it looks 
like Chinstrap penguins are the 
smallest.

Why would I want to do this?
• It’s all about comparing observed and 

expected.
• MC randomized data is the 

expectation under the null

Penguin Flippers: Monte Carlo Randomization
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Penguin Flippers: Monte Carlo Randomization

• There is some noise, but they all look 
pretty same-ish.

• It’s like collecting many samples if the 
null hypothesis were true!

• The behavior of many MC resamplings 
represents a null distribution.
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Let’s look at some more MCMC 
randomizations:



Bootstrap Resampling: Resampling the Alternative Hypothesis

Null hypothesis: we’ve seen what the data look like when we randomly 
relabel the flipper lengths with species.

• This is a good representation of a null hypothesis.
• Labels are untethered from measurements.

Alternative hypothesis: flipper lengths for each species are drawn from 
different distributions.

• Bootstrapping resamples entire rows: it’s analogous to taking 
multiple samples from the population.

• Labels are kept with their measurements
• If the null hypothesis were true, bootstrapping results should be 

indistinguishable from the MCMC results.
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Let’s randomly sample some rows of 
data
• It looks pretty similar to the original 

data.
• This approximates what we might 

have observed if we could do another 
experiment

Why would I want to do this?
• Generates an alternative distribution
• Can help detect outliers/influential 

observations.
• These can be real data, or they might 

indicate a data quality issue.

Penguin Flippers: Bootstrap Randomization
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Let’s look at some more bootstrap 
randomizations:
• There is some noise, but the all look 

pretty same-ish. It’s like collecting 
many samples if there were the null 
hypothesis were false!

• This is the essence of the Frequentist 
ideal of repeated sampling.

• Since most realizaitons look the same, 
there are probably not many outliers 
or extremely influential observations.

Penguin Flippers: Bootstrap Randomization
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What’s in This Section?

• What is resampling?
• Sampling with replacement.
• Bootstrap and Monte Carlo 

randomization
• Resampling the null hypothesis
• Resampling the alternative hypothesis

• Resampling for the null (Monte Carlo) 
and alternative (Bootstrapping) 
hypotheses.

• Why sample with replacement?
• When is resampling useful?
• Breaking vs. retaining associations in the 

data.
• Labeled data.

Slides Take-Home Concepts
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Deck 6 Recap
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Important concepts

• Optimization criteria
• What are the criteria for least squares and maximum likelihood methods?

• What is likelihood?
• How do we measure/optimize for likelihood?

• What are least squares methods?
• How do we measure/optimize least squares?

• When are likelihood and least squares equivalent?
• What are two major classes of resampling, and what do the tell us?
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In-Class Likelihood and general 
Q+A

Any questions?
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