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Announcements

Updated Deck 3 slides: re-download!
DataCamp: Intermediate R

• Optional, but may be useful as a supplement to the course/lab materials

In-Class Model Thinking
• Graded, except for those in the Default Group

Default Group: If you don’t have a grade, make sure you’re part of a 
group (even if it’s a group of 1).
Azure virtual desktop…. If you have problems logging in, create a 

screenshot and include an explanation of what you tried to do.
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Understanding variables vs. functions

• Can contain any kind of R object
• Single number, vector, data frame, etc

• The class() function will tell you what 
kind of object they hold

• They are like nouns in that they don’t 
perform an action, they just represent an 
object.

• Variables aren’t followed by parentheses.
• We can assign the output of a function to 

a variable

• Functions are a particular kind of entity 
in R.

• We type parentheses at the end of a 
function name to let R know that it’s a 
function and that we want to evaluate it.

• Functions are like verbs; they may take 
an object, and they perform some kind of 
action, possibly returning a value.
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Variables Functions

• Variables and functions both have names that you type into r without using quotation marks.
• Functions are typically evaluated, and they return a result of some type.
• Functions may return objects like vectors, matrices, data frames etc.



Evaluating a function + saving to a variable

• When we call a function in R, it may return a value or object.
• We can assign the function output to a variable.
• For example, in the expression:

• First, matrix() (a function) is evaluated, then assigns the output to m1 (a 
variable)

• The material to the right of the assignment operator is always evaluated 
first.
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What’s In This Deck?

• Data Exploration
• Types of Plots
• Functions, variables, constants
• Formulae and notation
• Classes of functions
• Intro to distributions

• Figuring out which parts of a function 
are variables, and which are 
constants.

• Bases vs. exponents
• Exponentials win over powers every 

time!
• Linear, asymptotic, and monotonic.
• Summarizing and raw-data plots.
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Slides Selected Key Take-Home Concepts



Data Exploration
With examples in built in R!

* R code available on request, absolutely no warranty.
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Statistics and Parameters: Frequentist Perspective

• Let’s think about data exploration 
from a Frequentist perspective!

• What is a statistic and what is a 
parameter?

• What is a population and what is a 
parameter?
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We’re guests in a Frequentist world [MS Office Art Suggestion]



Data Exploration

• Compact summary of data
• Extremely important, but not as 

intuitive as a graphical exploration
• Summary statistics:

• Center
• Spread
• 5-number summary

• Helps you get an intuitive ‘feel’ for 
what’s in your data.

• Graphs/Plots!
• Many types, each shows different aspect 

of data.

• Important distinction: does my plot 
show all data points, or a summary of 
aggregated data?
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Numerical Graphical



Data Exploration

• Mean
• Median
• Mode

• Range: min and max
• Interquartile range (IQR)
• Variance
• Standard deviation
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Center Spread or Dispersion

We’re most often interested in two characteristics of our data:



Data Exploration

• Center and spread are easy to understand numerically.
• Other quantities make more sense graphically:

• Skew
• Kurtosis
• Bi- or multi-modality
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Association is a value neutral term.
• It is useful when you don’t want to 

imply causality, or any specific form 
of a relationship.

How can we describe an association?
• Qualitative and quantitative
• Numerically and graphically

Associations
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Associations: graphical exploration
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Scatterplots are useful Pairplots are even better!



Correlation Coefficients

• Correlations measure how close 
points lie to a curve.

• How well can you predict y from x?
• Correlations are a kind of descriptive 

stochastic model.
• But not a very powerful one, as we’ll see. 

• Limited to two variables.
• Spearman and Pearson correlations 

are limited to monotonic functions.
• Does not tell us anything about the 

magnitude of an association.
• Cannot deal with multi-collinearity.

• But don’t worry, we have tools that can.
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Correlations describe the strength of 
association between two variables Some limitations and caveats



Correlation
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• Correlation ranges from -1 to 1:
• 1 indicates perfect correlation

• Bivariate data lies exactly 
on a line of positive slope

• -1 indicates perfect negative 
correlation

• Data lies exactly on a line 
with negative slope

• 0 Correlation: Points are totally 
random with respect to each 
variable.

Correlation Measures the Strength of the 
Association Between two Variables.
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Correlation – Information Perspective
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• Correlation ranges from -1 to 1:
• Corr 1: We can predict y from x 

perfectly.  There’s no noise, and 
as x increases, y increases.  x 
tells us all we need to know 
about y.

• Corr -1: We can perfectly 
predict y from x, there is a 
negative relationship.with
negative slope

• 0 Corr: X tells us nothing about 
y.

Correlation Measures the Strength of the 
Association Between two Variables.
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Association: Numerical exploration
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• Can you guess what the numbers (all 
0) represent? 

• How would you describe these 
associations?

• Does knowing the value of x tell you 
anything about y?

More complicated relationships
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Correlation Coefficients
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Denis Boigelot: public domain image
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In-Class R Practice
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Announcements: Sep 20th

• Assignment File Formats: pdf or html (occasionally online text)
• Fixed correlation plot for colorblind accessibility (Deck 3)

• Will work to update others as we go.

• First batch of assignments are graded!  Check Moodle and let me or Ana 
know if there are any issues.

• Software setup assignment: If you didn’t get 100%, you may resubmit. 
This is a special arrangement for this assignment only; it’s vitally 
important to get the software setup correctly.

• In-class R practice feedback.
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Data Dimensionality: How many variables do I have?

What is data dimensionality?
• It’s just the number of variables in 

your data.
• They don’t have to correspond to 

physical and temporal dimensions.
• Axes in ‘variable space’ or ‘parameter 

space’

• 1D: boxplots, histograms
• 2D: conditional boxplots, 

scatterplots
• 3D: coplots, 3D plots, ‘slices’
• 4D is difficult or impossible

• Multiple 3D ‘panels’
• 5D and higher is generally 

impossible with single plots.
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Data Dimensionality Visualizing data



Scatterplots and Pairplots

• Good for 2-dimensional data
• Requires 2 continuous variables
• 3D scatterplots are possible, but they 

can be hard to interpret if they’re not 
interactive.

• Matrix of 2D scatterplots.
• Useful for multi-dimensional data.
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Scatterplots Pairplots



Scatterplots and Pairplots
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Scatterplots are useful Pairplots are even better!



Visualize 3-Dimensional data with 2D 
slices

• Individual data points are plotted 
on x-y plane

• The z-axis is divided into bins
• Straightforward for categories
• Binning algorithm needed for 

continuous
• Each z-bin is flattened and plotted 

as 2D

Visualizing 3D Data: Coplots
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Visualizing 3D Data: Coplots

Each slice is a penguin 
species:

• Adelie

• Chinstrap

• Gentoo

What can you see?

Coplot with a categorical 
variable
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Visualizing 3D Data: Coplots

Body mass broken into 6 
‘bins’.

What insight does this 
plot show?

Can you explain the two 
clusters at greater body 
mass?
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4D Slice Plots: Point Color and Shape

• 6 body mass bins

• Sex as plotting character

Do the groups make more 
sense now?

• What factor(s) is/are still 
missing?

• How could you put this 
into an English sentence?
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dimension as point shape.
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3D example: Modeling Mountain Pine Beetle epidemics

3-dimensional data
Three model parameters:

1.Beetle fertility
2.Tree vigor
3.Tree density

Two response types:
1.Long term epidemic behavior - categorical: erratic or regular 

epidemics
2.Epidemic proportion - continuous: long-term average percent of 

epidemic area
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2D Slice Plots: Slices + Epidemic Behavior (discrete) Response as Color
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2D Slice Plots: Slices + Epidemic proportion (Continuous Response) as Color
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• Show the ‘shape of the distribution’ of 
the data.

• Sometimes called frequency diagrams.
• Data are aggregated into bins

Univariate Data: Histograms

Histogram of Penguin Bill Length
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• Summarizes data: like a 5-number 
summary.

• IQR, Median
• Whiskers: it’s complicated

• https://www.r-
bloggers.com/2012/06/whisker-of-boxplot/

• Univariate: but can be made 
bivariate, or even 3D with grouping 
factors.

• Gives you an idea about spread and 
skew.

• How is it different from a histogram?

Univariate Data: Boxplots
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• Univariate Data, aggregated by a 
grouping factor.

• Kind of like a coplot

• Summarizes data just like a regular 
boxplot

Conditional Boxplot: Univariate with Grouping Factor
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• Two grouping factors
• 3D data

Doubly Conditional Boxplot

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 38

Female
Adelie

Male
Adelie

Female
Chinstrap

Male
Chinstrap

Female
Gentoo

Male
Gentoo

35
40

45
50

55
60

Boxplot of Penguin Bill Length
(grouped by species)

sex : species
Bi

ll 
le

ng
th

 (m
m

)



Graphical Exploration Recap

• Associations
• Tools to describe associations

• Spearman and Pearson correlation
• Graphical exploration

• Data dimensionality and plotting
• Bivariate and univariate plots

• Plots that show all data: coplots, scatterplots, 3D scatterplots, 
others?

• Plots that show aggregated data: histograms, boxplots, others?
• Grouping factors (conditioning variables)

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 39



In-Class Data Exploration

• NOTE: Moodle group self-select will be slightly different going forward!
• Setting was wrong on last Thursday’s assignment
• Use the group self-select for every assignment going forward.
• Group names will have to be slightly different each time (it’s a pain, but it’s the 

best I can do to keep track of groups…)
• Feel free to shuffle groups as you wish, that’s why I have a different 

group/grouping set up each time.
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Announcements

• Re-load the main course page often!
• Remember office hours: great time to ask questions.

• Tuesday/Thursday 1-2
• By appointment (email me!)

• Echo360 Lecture recordings.
• Several assignments are due on the 25th:

• Check the ‘Upcoming events’ feature on Moodle to see the timing of due dates.
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Symmetrical and Skewed Data: Histogram and Boxplot

symmetrical skewed
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Function basics: important function terms

• monotonic, asymptotic, and 
divergent

• variables and constants
• powers and exponents
• local linearity
• domains: bounded and 

unbounded
• sums and integrals
• continuity, slope, and step 

functions
• saturating, diminishing returns
• inverses
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variables and constants
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• Constants may also be referred to as 
parameters

How many variables are there in this equation?

𝑃𝑃(𝑥𝑥) =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒− 𝑥𝑥−𝜇𝜇 2/2𝜎𝜎2

• A good strategy to simplify the form of a 
function is to set all constants to zero or one. 
That way you can eliminate them from the 
formula, leaving only the variables.

• Hint: How many times does x occur?



Variables and constants, i.e. parameters

• Only 1: 𝑥𝑥
• Use the strategy above to eliminate 

the constants:

𝑃𝑃(𝑥𝑥) = 𝑒𝑒−𝑥𝑥2

𝑃𝑃(𝑥𝑥) =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒− 𝑥𝑥−𝜇𝜇 2/2𝜎𝜎2
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How many variables are there in this 
equation?

That is considerably simpler to understand 
than the original monstrosity!



Variables and constants, i.e. parameters

𝑃𝑃(𝑥𝑥) = 𝑒𝑒−𝑥𝑥2
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We can plot this: it looks like the Normal curve!



Class of functions

Common functions we use as deterministic 
models:

• linear
• polynomial, rational, and power
• exponential (and logarithmic)
• periodic
• combination functions
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Linear functions have variables raised to a 
power of 1.

• Can be one or more variable:
• 𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏
• 𝑦𝑦 = 𝑚𝑚1𝑥𝑥1 + 𝑚𝑚2𝑥𝑥2+. . . +𝑚𝑚𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏

• Statistical literature likes to use alphas, and 
betas

• 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖+. . . +𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛 + 𝜖𝜖
• 𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖+. . . +𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛 + 𝜖𝜖

• Key features:
• The variables, i.e. the 𝑥𝑥𝑖𝑖 ,are first-degree.
• Each variable is multiplied by a parameter, the 
𝛽𝛽𝑖𝑖 is multiplied by each value of 𝑥𝑥

A linear model is always a great place to 
start.

Linear functions
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Linear models: interpretation

A linear model describes a constant rate of change
• Reed canary grass plant biomass increases by 0.71 grams for each 

additional gram of added soil nitrogen per cubic meter.
• The rate of increase is constant everywhere:
• If soil with 1g nitrogen results in biomass of 1 g.

• Soil with 2g nitrogen: expected biomass: 1.71 g.
• If soil with 3000g nitrogen results in biomass of 100 g.

• Soil with 3001g nitrogen: expected biomass: 100.71 g.

Is the constant rate of change reasonable?
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Local linearity

Could you model this curve with a linear function?
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Local linearity

Could you model this curve with a linear function?
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Local linearity

We are often justified in using a linear model, even when we know a 
relationship isn’t linear:

• If we are only interested in a small subset of the range of predictor 
values.

• All (most) continuous functions look very linear if you zoom in.
• Linear functions are much simpler than the rest of the functions we’ll 

consider.
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Atlas of Function Classes
A selection
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Notation for Polynomial Functions

Let a be a real number, and b be an integer:
a is the base
b is the exponent

Exponentiation in this world means:

“Multiply a by itself b times.”

𝑏𝑏
What are bases and exponents? Notation convention:
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Polynomial functions

𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑓𝑓 𝑥𝑥 = 𝑥𝑥3 − 2 × 𝑥𝑥2

Linear functions are a subset of 
polynomial functions.
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Polynomial functions have non-negative 
integer powers:



Polynomial models

Polynomial terms are sometimes added to models to improve the model 
fit.

• Polynomial models are typically phenomenological.
• There’s usually not a clear biological or ecological interpretation.
• You can think of them as tuning parameters to increase model fit, or 

to help with normality of the residuals.
𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥12 + 𝛽𝛽3𝑥𝑥2

• Notice this polynomial model is linear in the parameters!

What does ‘linear in the parameters’ mean?
• The parameters (the betas) are not bases or exponents.
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Polynomial models

Polynomial terms are sometimes added to models to improve the model 
fit.

• Polynomial models are typically phenomenological.
• There’s usually not a clear biological or ecological interpretation.
• You can think of them as tuning parameters to increase model fit, or 

to help with normality of the residuals.
𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥12 + 𝛽𝛽3𝑥𝑥2

• Notice this polynomial model is linear in the parameters!

What does ‘linear in the parameters’ mean?
• The parameters (the betas) are not bases or exponents.
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Rational functions

• Polynomial functions are a subset 
of rational functions.

• Rational functions can be 
discontinuous: division by zero.
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Rational functions can be expressed as a ratio 
of polynomial functions.



Rational functions

• Rational functions can emulate 
very complicated curves

• Tuning, improving normality of 
residuals, etc.

• Not used as often as polynomial or 
power law/fractional exponent 
functions
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Rational functions are typically used in 
phenomenological models.



Fractional or real number exponents

The square root function is a 
fractional exponent:

𝑥𝑥 = 𝑥𝑥
1
2

Rational functions are typically used in 
phenomenological models.

• Often a result of tuning procedures 
like the Box-Cox transformation.

• There are so-called power-law 
distributions (like the Pareto), but we 
won’t be talking much about these
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Functions in which the exponents can be 
expressed as fractions (rational numbers). McGarigal calls these power law functions.



Power vs. exponential functions
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𝑓𝑓1(𝑥𝑥) = 𝑥𝑥2.4 − 𝑥𝑥0.5

𝑓𝑓2(𝑥𝑥) = 𝑥𝑥2.9 + 𝑥𝑥1.5

𝑔𝑔(𝑥𝑥) = 1.4𝑥𝑥 − 0.1𝑥𝑥

• Exponential will always* 
win, eventually

*subject to terms and conditions

Which of these functions 
grows fastest?
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Expontials: the variable is the 
exponent; the base is a constant.

𝑔𝑔(𝑥𝑥) = 2.4𝑥𝑥 − 0.5𝑥𝑥

Powers: the variable is the base; the 
power is a constant.

𝑓𝑓(𝑥𝑥) = 𝑥𝑥2.4 − 𝑥𝑥0.5

Power vs. exponetial functions

In the long term exponentials always grow faster than any power (i.e. rational) function.
• A rational function may grow faster initially, but an exponential term always wins as x approaches 

infinity.
• An exponential beats any power. But the gamma function wins against an exponential…
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Exponential functions
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• When 𝑥𝑥 > 0 the function 
is monotonic increasing.

• When 𝑥𝑥 < 0 the function 
is monotonic decreasing
and asymptotic.

• Any constant raised to 
the power of zero equals 
1: 𝑥𝑥0 = 1

Exponential functions have 
the variable as the exponent.
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Logarithmic functions
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• Applying a 
logarithmic function 
undoes an 
exponential function.

• Logarithmic functions 
are slow-growing, but 
not asymptotic.

Logarithmic functions are the 
inverse of exponential functions.
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Exponential and Logarithmic functions
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• Exp: feedback
processes, 
exponential growth, 
divergent

• Log: diminishing 
returns, useful for 
dealing with very 
large number, 
linearizing, variance 
stabilizing

Mechanistic Interpretations
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Ricker Function: f(x) = 2.1x-3x

Just like the name says, 
they are mixtures of 
different function types.

• Often have a 
theoretical basis: they 
can be mechanistic.

The Ricker function

Hybrid functions
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Graphical intuition
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• Asymptotic: tends 
toward a value

• Divergent: tends 
toward infinity or 
negative infinity

• Monotonic: always 
increasing or always 
decreasing

Function Terminology
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Graphical intuition
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• Continuous: no breaks 
or jumps

• Local linearity: most
functions resemble 
linear functions if you 
zoom in close enough.

• This is closely 
related to 
differentiability in 
calculus.

Function Terminology
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In-Class Reading Data Files
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Probability Distributions 1
General Concepts
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• Inference with the dual model 
paradigm

• What is a distribution?
• Event, domain, sample space
• Key probability theory results

• law of total probability
• independent events

Key probability terms and concepts
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Stepping back: What do we need to do inference?

ECo 602 https://michaelfrancenelson.github.io/environmental_data/ 73

We need a model: a dual
model! Why do we want to do inference?

• We want to go beyond descriptive 
statistics.

• We want to learn something about a 
larger population from a sample.

• We want to estimate population 
parameters from sample statistics.

• We want to create a statistical model for 
understanding and/or prediction



Stepping back: What do we need to do inference?

• We need the deterministic model of 
the means to about the average or 
expected behavior.

• We need the stochastic model to 
know about the variation.

• We need the stochastic model to 
know if an observation is unusual
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We need the Dual Model Paradigm to do inferential statistics.



Stepping back: What is inference?

For our purposes: inference is a way to learn something about a larger 
population from the properties of a sample.
More formally: Inference is estimating population parameters from 
sample statistics.

• We use the deterministic model to calculate model parameter 
estimates.

• We use the stochastic model to quantify confidence and 
significance.
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Inference: why do we need distributions?

• Sure, but without a stochastic model we 
can’t quantify the uncertainty in our 
guesses.

• Relatively few systems are completely, or 
even mostly described by a deterministic 
model.

• Planetary orbits
• Chaotic systems governed by 

deterministic functions: sadly, we won’t 
get to talk about these.

• Logistic population growth
• Lorentz equation

• Help us understand the ‘noise’ part of 
the system.

• Help us quantify and understand 
uncertainty.

• Theoretical Distributions
• There are hundreds of named, 

parametric distributions
• Defined by mathematical functions
• Describe Stochastic processes

• Empirical Distributions
• Calculated from data

Couldn’t we just use our deterministic model 
to make predictions? Probability Distributions
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What is a distribution?

Remember that words often have specific meanings in statistics:
• What do I mean by likelihood?
• What do I mean by event?

A distribution is a map from events to measures of likelihood
• Why would we want such a map?
• What do I mean by likelihood?

• We’ll talk about probability theory later.
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Parametric and Empirical Distributions

• The functions have one or more 
parameters that define how 
probabilities are allocated to 
events.

• What are the parameters of the 
Normal distribution?

• We often want to estimate the 
parameters from samples.

• There is no analytical function, but we 
can compare empirical distributions to 
parametric distributions.

• Useful for comparing null and 
alternative hypotheses
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Parametric distributions are defined by 
mathematical functions

Empirical distributions are computed from 
observations.



Probability Distribution Functions

The map of events to probabilities are defined by:
• Probability Density Functions for continuous distributions
• Probability Mass Functions for discrete distributions.
• The values of PDFs and PMFs are always non-negative, by the 

definition of probability.

Two other types of functions are used to describe distributions: 

• cumulative functions

• quantile functions.
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Density or Mass Function: PDFs & PMFs
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Probability density is the y-value of the probability 
density curve for a given value of x.

• You can think of it as the height of a curve
• For continuous distributions, it is not equal to 

the probability of observing a particular value of 
x.



Cumulative Probability Functions: CDFs & CMFs

Probability Density is the height of the density curve.
• Provides a measure of likelihood of an event
• Measure is relative for continuous; measure is the probability for 

discrete.
Cumulative density is the accumulated area under the density curve to 
the left of x.

• It’s an integral!
• It is the probability of observing a value equal to or less than x.
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Remember:

• Density = height of the 
curve at x.

• Cumulative Density = 
area under the curve, to 
the left of x

Demonstration of PDF and CDF 
using the Normal distribution.
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x = -1.96
probability density (height of the curve at x) = 0.06
cumulative density (area of shaded region) = 0.02

Probability Distribution Functions: Graphical Intuition
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Remember:

• Density = height of the 
curve at x.

• Cumulative Density = 
area under the curve, to 
the left of x

Demonstration of PDF and CDF 
using the Normal distribution.
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Probability Distribution Functions: Graphical Intuition
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Probability Distribution Functions: Graphical Intuition

Remember:

• Density = height of the 
curve at x.

• Cumulative Density = 
area under the curve, to 
the left of x

Demonstration of PDF and CDF 
using the Normal distribution.
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Remember:

• Density = height of the 
curve at x.

• Cumulative Density = 
area under the curve, to 
the left of x

Demonstration of PDF and CDF 
using the Normal distribution.
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Probability Distribution Functions: Graphical Intuition
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Remember:

• Density = height of the 
curve at x.

• Cumulative Density = 
area under the curve, to 
the left of x

Demonstration of PDF and CDF 
using the Normal distribution.
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Probability Distribution Functions: Graphical Intuition
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Remember:

• Density = height of the 
curve at x.

• Cumulative Density = 
area under the curve, to 
the left of x

Demonstration of PDF and CDF 
using the Normal distribution.
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Probability Distribution Functions: Graphical Intuition
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Remember:

• Density = height of the 
curve at x.

• Cumulative Density = 
area under the curve, to 
the left of x

Demonstration of PDF and CDF 
using the Normal distribution.
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Probability Distribution Functions: Graphical Intuition
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Recap of essentials:

Distributions
1.They assign a probability to every event in a sample space.
2.We can use them as the stochastic model in the dual model paradigm.

Probability essentials
1.Probabilities are non-negative
2.Law of Total Probability: Probabilities of all events in sample space sum 

to 1.0
3.Independent events: joint probability is product of individual 

probabilities

We’ll continue to build our intuition about Probability Distributions
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