
Design & Analysis of Ecological Data Landscape of Statistical Methods: Part 3

Topics:

- 1. Multivariate statistics
- 2. Finding groups cluster analysis
- 3. Testing/describing group differences
- 4. Unconstratined ordination
- 5. Constrained ordination

Landscape of Statistical Methods...

The Landscape

Mulivariate statistics

Why do we need multivariate statistics?

- Reflect more accurately the true multidimensional nature of natural systems
- Provide a way to handle large data sets with large numbers of variables
- Provide a way of summarizing redundancy in large data sets
- Provide rules for combining variables in an "optimal" way

Landscape of Statistical Methods...

Mulivariate statistics

Why do we need multivariate statistics?

- Provide a means of detecting and quantifying truly multivariate patterns that arise out of the correlational structure of the variable set
- Provide a means of exploring complex data sets for patterns and relationships from which hypotheses can be generated and subsequently tested experimentally

What is mulivariate statistics?

$$y = x1 + x2 + ... xj$$

Regression

Analysis of Variance

Contingency Tables, etc.

$$y1 + y2 + ... yi = x$$

Multivariate ANOVA
Discriminant Analysis
CART,MRPP,MANTEL

 $y1 + y2 + ... yi = x1 + x2 + ... xj$

Canonical Corr. Analysis
Constrained ordination

 $y1 + y2 + ... yi$

Unconstrained ordination
Cluster Analysis

Multivariate Statistics

Landscape of Statistical Methods...

Mulivariate methods

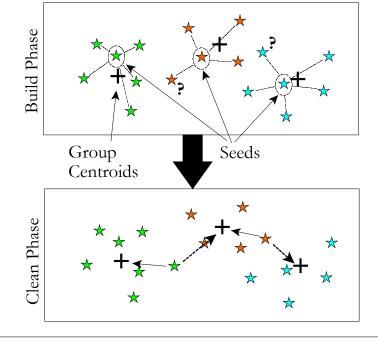
- Finding groups (Cluster analysis)
- Testing for groups (e.g., MRPP, MANTEL)
- Discriminating among groups (e.g., DA, ISA, mCART)
- Unconstrained ordination (e.g., PCA, CA, NMDS)
- Constrained ordination (e.g., RDA, CCA, CAPS)

• Large family of techniques with similar goals; operating on data sets for which pre-specified, well-defined groups do "not" exist; characteristics of the data are used to assign entities into artificial groups

Finding groups – cluster analysis

■ Can we organize sampling entities (e.g., sites) into discrete classes, such that within-group similarity is maximized and among-group similarity is minimized?

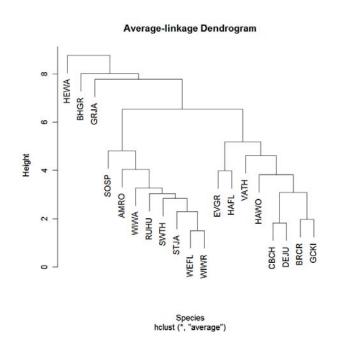
	Species						
Sites	A	В	C	D			
1	1	9	12	1			
2	1	8	11	$\lceil 1 \rceil$			
3	$\lfloor 1 \rfloor$	6	10	10			
4	10	0	9	10			
5	10	2	8	10			
6	10	0	Y 7	<u> </u>			


Landscape of Statistical Methods...

Finding groups – cluster analysis

Nonhierarchical clustering:

■ NHC methods merely assign each entity to a cluster, placing similar entities together in order to maximize within-cluster homogeneity

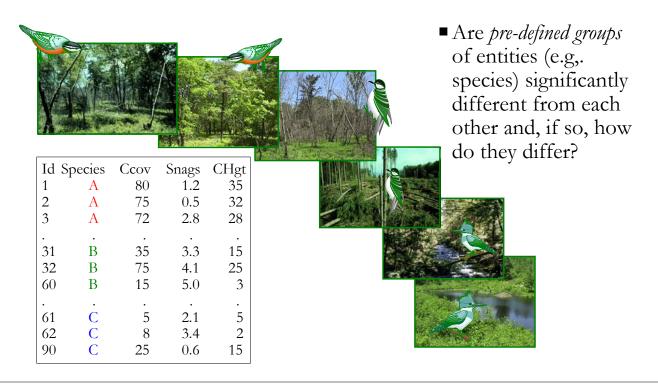

K-means clustering

Finding groups – cluster analysis

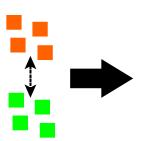
Hierarchical clustering:

■ HC methods combine similar entities into classes or groups and arrange these groups into a *hierarchy* that reveals relationships among the entities classified

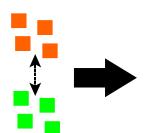
Landscape of Statistical Methods...


Mulivariate methods

- Finding groups (Cluster analysis)
- Testing for groups (e.g., MRPP, MANTEL)
- Discriminating among groups (e.g., DA, ISA, mCART)
- Unconstrained ordination (e.g., PCA, CA, NMDS)
- Constrained ordination (e.g., RDA, CCA, CAPS)


• Family of different methods for testing and/or describing differences among *prespecified*, *well-defined groups* based on a set of discriminating variables

Discriminating among groups



Landscape of Statistical Methods...

Testing for group differences

- Are groups significantly different? (How valid are the groups?)
 - ► Multivariate Analysis of Variance (MANOVA)
 - ► Multi-Response Permutation Procedures (MRPP)
 - ► Analysis of Group Similarities (ANOSIM)
 - ► Mantel's Test (MANTEL)

- How do groups differ? (Which variables best distinguish among the groups?)
 - ► Discriminant Analysis (DA)
 - ► Classification and Regression Trees (CART)
 - ► Logistic Regression (LR)
 - ► Indicator Species Analysis (ISA)

Mulivariate methods

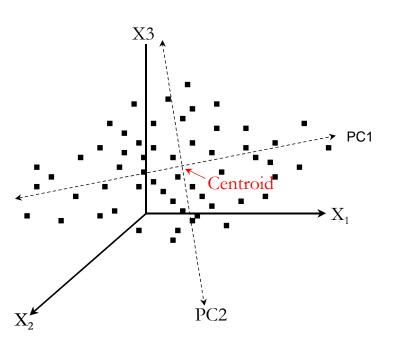
- Finding groups (Cluster analysis)
- Testing for groups (e.g., MRPP, MANTEL)
- Discriminating among groups (e.g., DA, ISA, mCART)
- Unconstrained ordination (e.g., PCA, CA, NMDS)
- Constrained ordination (e.g., RDA, CCA, CAPS)

• A family of different methods for organizing sampling entities (e.g., species, sites, observations, etc.) along continuous gradients based on a set of interdependent variables

Landscape of Statistical Methods...

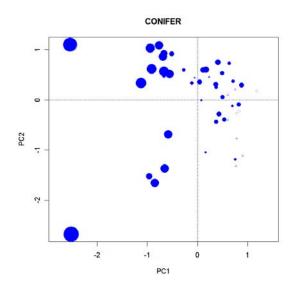
Unconstrained ordination

■ Can we organize entities (e.g., sites) along one or more gradients based on their relationships among the interdependent variables?

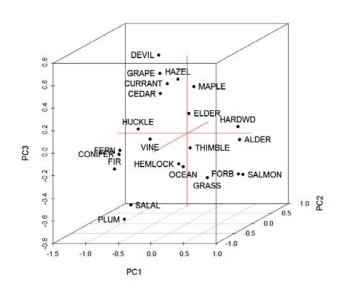

Sites	Spec	ies A	Spec	ies B	Spec	ies C	Spec	ies D	Spec	ies E
1	0	(1)	5	(1)	1	(1)	10	(4)	10	(4)
2	2	(3)	8	(3)	4	(3)	12	(6)	20	(6)
3	8	(6)	20	(6)	10	(6)	1	(2)	3	(2)
4	4	(5)	11	(5)	8	(5)	11	(5)	14	(5)
5	1	(2)	6	(2)	2	(2)	2	(3)	6	(3)
6	3	(4)	10	(4)	6	(4)	0	(1)	0	(1)

Unconstrained ordination

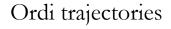
Obs	Canopy Cover	Snag Density	Canopy Height
1	80	1.2	35
2	75	0.5	32
3	72	0.8	28
•	•	•	•
•	•	•	•
N	25	0.6	15

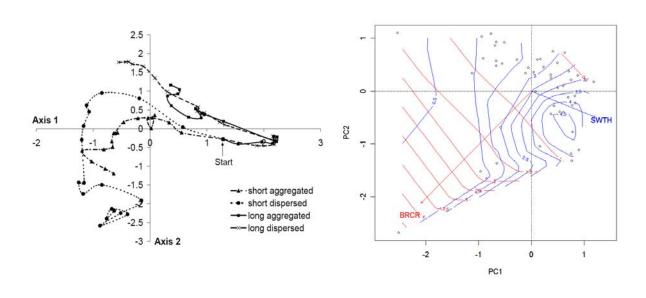

$$PC1 = .8x_1 - .4x_2 + .1x_3$$

 $PC2 = -.1x_1 - .1x_2 + .9x_3$


Landscape of Statistical Methods...

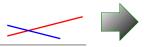
Unconstrained ordination


2d ordi bubble plot


3d ordi scatter plot

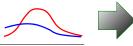
Unconstrained ordination

Ordi overlays

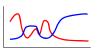


Landscape of Statistical Methods...

Unconstrained ordination


Linear

■ Principal components analysis (PCA)


- Factor analysis (FA)
- Multidimensional scaling (MDS/PCO)
- ML-Unconstrained linear ordination (ULO)

Quadratic

- Correspondence analysis (CA & DCA)
- ML-Unconstrained quadratic ordination (UQO)

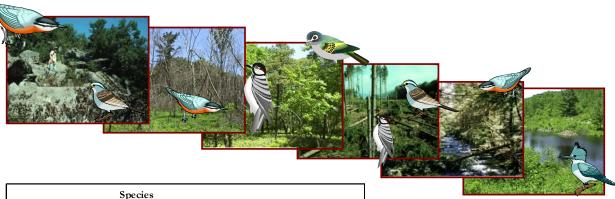
Smooth

■ ML-Unconstrained additive ordination (UAO)

Nonlinear

■ Nonmetric multidimensional scaling (NMDS)

Mulivariate methods


- Finding groups (Cluster analysis)
- Testing for groups (e.g., MRPP, MANTEL)
- Discriminating among groups (e.g., DA, ISA, mCART)
- Unconstrained ordination (e.g., PCA, CA, NMDS)
- Constrained ordination (e.g., RDA, CCA, CAPS)

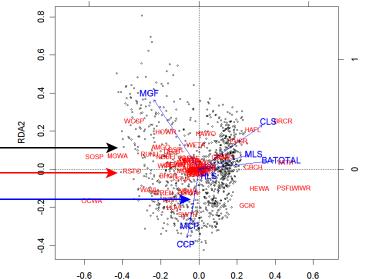
• A family of different methods for extending unconstrained ordination in which the solution is constrained to be expressed by ancillary variables

Landscape of Statistical Methods...

Constrained ordination

Species					Tree	Snag	Shrub	
Sites	A	В	С	D	E	cover	density	cover
1	0	5	1	10	10	15	5 0.2	30
2	2	8	4	12	20	55	0.5	45
3	8	20	10	1	3	55	5 2.3	22
4	4	11	8	11	14	75	5 1.8	31
5	1	6	2	2	6	85	0.3	15
6	3	10	6	0	0	60	0.8	10

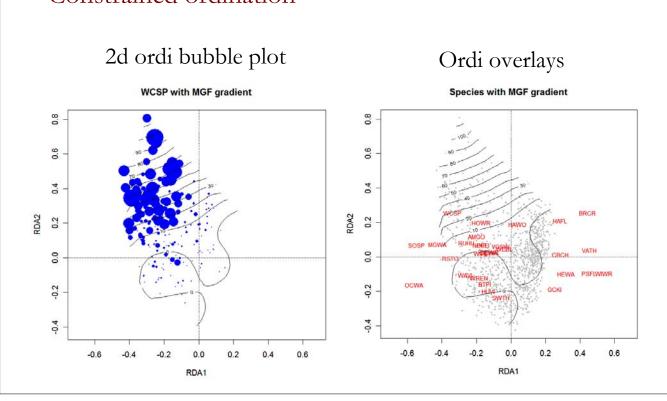
■ Can bird community patterns be explained by measured environmental variables?


Constrained ordination

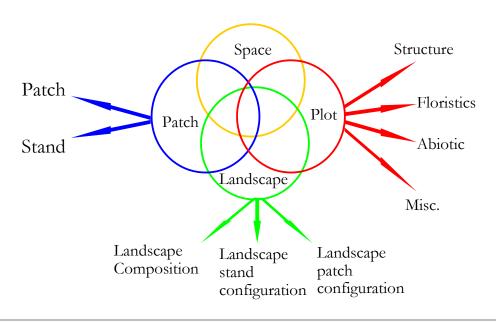
■ The *triplot* displays the major patterns in the species data with respect to the environmental variables

Tri = (1) Samples

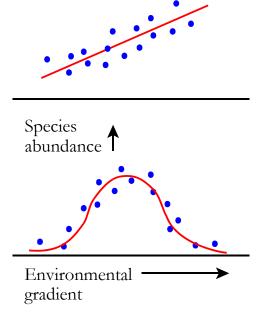
(2) Species


(3) Environment

RDA1


Landscape of Statistical Methods...

Constrained ordination


Constrained ordination

Variance partioning

Landscape of Statistical Methods...

Constrained ordination

- Constrained analysis of principal coordinates (CAP)
- Redundancy analysis (RDA)

Canonical correspondence analysis (CCA)