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1. The landscape of statistical methods

The field of ecological modeling has grown amazingly complex over the years. There are now
methods for tackling just about any problem. One of the greatest challenges in learning statistics is
figuring out how the various methods relate to each other and determining which method is most
appropriate for any particular problem. Unfortunately, the plethora of statistical methods defy
simple classification. Instead of trying to fit methods into clearly defined boxes, it is easier and more
meaningful to think about the factors that help distinguish among methods. In this final section, we
will briefly review these factors with the aim of portraying the “landscape” of statistical methods in
ecological modeling. Importantly, this treatment is not meant to be an exhaustive survey of statistical
methods, as there are many other methods that we will not consider here because they are not
commonly employed in ecology. In the end, the choice of a particular method and its interpretation
will depend heavily on whether the purpose of the analysis is descriptive or inferential, the number
and types of variables (i.e., dependent, independent, or interdependent) and the type of data (e.g.,
continuous, count, proportion, binary, time at death, time series, circular). We will not review these
issues again here, but take the time to refresh your memory by rereading the first two chapters of
this course.
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The plethora of statistical methods available to ecologists derives from the fact that ecological data is
complex — no single method can accommodate the myriad problems we encounter with ecological
data. Recall from part one of this course that statistical models typically consist of two parts, a
deterministic component and a stochastic (or error) component. Most of the differences among
methods are due to differences in assumptions about either the response variable, the deterministic
model, or the error model, and most are extensions or modification to the basic general linear model
that expresses Y as linear function of X where all observed values are independent and normally
distributed with a constant variance. For example, multivariate methods deal with models containing
more than one response variables (or a single set of interdependent - presumed response - variables);
additive models and nonlinear least squares models deal with nonlinear deterministic models;
generalized linear models deal with nonlinear deterministic models in combination with nonnorma
error distributions; generalized least squares models deal with heterogeneous (i.e., non-constant)
errors; mixed effects models deal with spatially and/or temporally nested etror structures; auto-
regressive models deal with temporally and/or spatially correlated errors (non-independence); and so
on. Non-parametric methods, such as tree-based models (e.g., classification and regression trees)
and quantile regression, make no assumptions about the errors. Ultimately, there are almost as many
methods as there are problems since analytical methods can be customized to almost any problem.
Indeed, the basis for model-based statistics is that the problem drives the construction of the
statistical model, the method of estimation is then determined by the statistical model in
combination with a selected inference framework (e.g., frequentist versus Bayesian).
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2. General linear models

General linear models (sometimes referred to as simply ‘linear models’, and not to be confused with
‘generalized’ linear models below) include simple and multiple linear regression, one-way and
multiway analysis of variance (ANOVA), and analysis of covariance (ANCOVA). While regression,
ANOVA and ANCOVA are often handled differently, and they are usually taught differently in
introductory statistics classes, they are all variants of the same basic model. R uses the function Im()
for all of these procedures which is based on the method of ordinary least squares.

The assumptions of the general linear model are that all observed values are independent and normally
distributed with a constant variance (homoscedastic), and that any continuous predictor variables
(covariates) are measured without error. Remember that the assumption of normality applies to the
variations around the expected value — the residuals — not to the whole data set.

The ‘linear’ part of ‘general linear model’ means that the models are linear functions of #he parameters,
not necessarily of the independent variables. In other words, ‘linear’ does not mean that the

relationship between Y and X is linear; it simply means that Y can be expressed as a linear function
of X.
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Example linear models:
Y ~ A-""ormal(bo + b, & l)
Y ~ A-""()J'rnal(bo § box & ", o l)

Y ~ A-"'ormal(bo + b log(x)_, crz)

Example nonlinear models:
Y ~ Normal (boez""_, 0'3)
Y ~ Normal (box <1 0'3)

¥ ~ 4\’707"1710](’503"84”’ o) 3)

Linear models

— y=hb0+bi"'x+e
**** y=b0+b1"x+b2"x"2 + e
= y=h0 +b1*log(x+1) + e

Nonlinear models

— y=b0"exp(b1*x) + e
----- y =b0"x"b1 +e
y = b0"x"exp(-b1*x) + e

For example, the following models are all linear regression models:

Yo Narmaf[f:'_:. + bx, JJ)

¥ o~ ;?"l.-rﬂ}"mﬂf[b.:. + E:ll_‘{.' + EJJ_};'J: JJ)

B e Narmaf(f:'.:. + b Log(x), JJ)

In all these models, we can define a new explanatory variable g, such that we have a model of the

form:

¥ ~ Narmaf(b,:, + bz, o ]

which is clearly linear in the parameters even though the relationship between Y and Xis not linear
except in the first model given above, in which the relationship is expressed as a straight line.
However, the following models (exponential, power law, and Ricker) are all nonlinear regression

models:
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Y ~ Narmaé.’{bgeh-x; D’l]
F ~ Narma.f[bax&-; JJ’]

Y ~ ;"-.Tarmaé.’(baxe'h-x: ..r:rl]

In all of these cases, the models are linear with respect to 4, but nonlinear with respect to &,.
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e A*'ormaf(bo + By, Gl)

coefficients:
Estimate 3td. Error t value Pri>|t]

(Intercept) | 1.1175) 0.9263  1.206 0.243
% i_ 1.11314 0.1584  7.029 1.47e-06 *+**
9ignif. codes: 0 ‘#%*xf [_001 ‘#* 0.0l ‘4 0,05 ‘.’ 0.1 °

Residual standard error:L2.149:on 18 degrees of freedom

Multiple R-squared: 0.7329, Adjusted R-squared: 0.7181
F-statistic: 49.4 on 1 and 18 DF, p-value: 1.47le-06

Simple linear regression
Simple, or ordinary, linear regression predicts y as a function of a single continuous covariate x. The

model is:
¥ ~ Narmaf{ba + bx, o° :I

Note, this model assumes the relationship between Y and X is linear and can be expressed as a
straight line in the plot of Y against X. If the relationship is not linear, and thus cannot be expressed
as a straight line, there are a number of options discussed below.
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2. 1\ [U.h’lp 16 hﬂeﬂ,f Multiple linear regression
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Y ~ ;\-"*ormal(bo b Bk o 0'3)

Ccoefficients:
Estimate Std. Error t wvalue Pr{>|t])

(Intercept) {-3.15211 3.2253 -0.977 0.34212
x1 i 1.0158! 0.1476 6.880 2.67e-06 ***
x2 i 1.7569} 0.5475 3.209 0.00515 **

hessssses

Signif. codes: D “**%/ 0_001 “** Q.01 “* 0.05 “*.F 0.1 *°

r
Residual standard error: :_1_._7_5_§:an 17 degrees of freedom

Multiple R-squared: 0.7358, Adjusted R-squared: 0.7047
F-statistic: 23.67 on 2 and 17 DF, p-value: 1.221e-05

Multiple linear regression

The simple linear regression model can be extended to multiple continuous predictor variables
(covariates), as follows:

T Narmlﬂf[b_:, +bx, + Bx,+..,0 ]

In addition, we can add interactions among covariates, testing whether the slope with respect to one
covariate changes linearly as a function of another covariate, e.g.:

¥ ~ }uarmas[_.b_:, s o e o e e o G-"J
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o 1
N o T S Sy o
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C C )
predictor (factor) > . | ——
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~
T T
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= o ) 9
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Coefficients:
Estimate Std. Error t value Pr{>|t])
{(Intercept) i ﬁ..'ﬂ:';}b: 0.4068 11.885 < 2Ze-16 **x
®B 13,1901 0.5753 5.545 7.91e-07 *** - T
xC E__t_._'ﬂ_E_il'ii 0.5753 9.967 4.24e-14 *** A{N(_)X A-_X tﬂ-l)le
8ignif. codes: 0 ‘¥*** [,001 **** 0.01 ‘*" 0.05 *." 0.1 °*
N , Df Sum 3q Mean Sq F value Pr (>F)
Residual standard error:t1.81%91on 57 degrees of freesdom b4 2 330.25 165.13 49.883 3.004e-13
Multiple R-squared: 0.6364, Adjusted R-squared: 0.6236 Residuals 57 186.68 3.31
F-statistic: 49.88 on 2 and 57 DF, p-value: 3.004e-13 e

One-way analysis of variance (ANOT"A)
If the predictor variables are discrete (factors) rather than continuous (covariate), the general linear
model becomes an analysis of variance. The basic model is:

Y, ~ f'l.'rﬂ}"??‘i!r:lf[a'i-; G‘J:I

In this model, the factor « is a categorical variable (typically defining levels of a treatment) with 7
levels. When fitting regression models, the parameters of the model are easy to interpret — they’re
just the intercept and the slopes with respect to the covariates. When you have factors, as in
ANOVA, the parameterization becomes tricker. By default, the model is parameterized in terms of
the differences between the first group and subsequent groups (treatment contrasts) rather than in
terms of the mean of each group, although the latter can easily be requested. In ANOVA, the basic
purpose is to determine whether the expected value of Y differs between or among levels of the
factor.
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4. N [U.h’l\ 7 (IY AN (:)X*_j&

® Multiple categorical
predictors (factors)

y

Yy ~ A"orma/(afi. + ﬂ, T Vs O'z)

coefficients:

gqg%mggg‘std. Error t
{(Intercept) : 4.5871] 0.6759
flB ' 6.7227) 0.9558
fZp : 3.4640; 0.9559
f1B: 2B 1-7.4319] 1.3518

_______

F-statistic: 16.72 on 3 and 36 DF

value

6
7
3

=5

.787
.033
.624
.498

Signif. codes: 0 ‘#*%7 [_001 ‘**** 0,01

Pr{>|t])

6.26e-08 ***
2.97e-08 ***
0.000889 **#
3.26e-06 ***

e 0205 M.% 0. A

Es
Residual standard error:12.137ion 36 degrees of freedom
Multiple R-squared: 0.582Z2, Adjusted R-squared: 0.5473

p-value: 5.726e-07

Two-way ANOVA

Factor 2

W Factor 1-A
0 Factor 1-B

ANOVA table

£1

2

1/t
Residuals

Df Sum Sq Mean Sq F value Pr {(>F)

1 50.406 90.406
1 0.635 0.635
1 138.083 138.083
36 164.437 4.568

19.790 7.988e-05
0.139 0.7115
30.227 3.260e-06

Multiway ANOV' A

Just as the simple regression model can be extended to include multiple covariates, the ANOVA
model can be extended to include multiple factors. For example, the full model for two-way
ANOVA (i.e., two factors) with an interaction is:

F. ~ Narmaf[a_. L T GJ)
i L o i

10

where 7 is the level of the first factor, and /is the level of the second factor. The parameters are again

defined in terms of contrasts. In the above model consider the case in which the two factors each

have two levels:

Factor 2
Factor 1 level I level 1T
level A mAI mAII
level B mBI mBII

then there will be four parameters: the first (“intercept”) parameter will be the mean of mAI; the

second parameter will be the difference between mBI and mAI; the third will be the difference
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between mAIl and mAT; and the fourth, the interaction term, will be the difference between mBII
and its expectation if the effects of the two factors were additive, mAI+(mAII-mAI)+(mBI-mAI),
which equals mBII-mAII-mBI+mAI. Similar to one-way ANOVA, the basic purpose is to

determine whether the expected value of Y differs among levels of the main factors independently
or interactively.

11



Landscape of statistical methods: part 1 12

Landscape of Statistical Methods...
General linear models

Simple linear regression
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. e > i _7,_5/-""-‘7& o ,‘,»’5/{
predictors (factors) P A R
& b /9,.--”/ °© o
and contimnuous P oot
. |

T o

covariate T \ ‘ ‘
0 2 4 6 8 10
X
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Y ~ Normalle, + fBx, 0
Coefficients:
Ei_iEi_rEgT_:g_ﬁtc. Error t value Pr{>|t|)

(Intercept) :rl.lELE: 0.8123 1.430 0.161
fB 1 5.4017; 1.1488 4.702 3.72e-05 *** & T
X i 1.1739; 0.1389 8.453 4.53e-10 *** A{N(_)X A-_X tﬂ.l)le
fB:x L—D.ZDZG: 0.1964 -1.032 0.309 ;
-— T Df Sum Sq Mean Sq F wvalue Pr (>F)
Signif. codes: (0 ‘*** 0.001 ‘**' 0.01 **' 0.05 '.” 0.1 ° f 1 182.60 192.60 54.2081 1.104e-08

" —_ == = X 1 423.84 423.84 119.2942 5.589e-13
Residual standard erro_ﬁ.g_]_.;ﬁﬁg_mn 36 degrees of freedom frx 1 3.78 3.78 1.0643 0.3091
Multiple R-squared: 0.829, Adjusted R-squared: 0.9148 Residual 36 127.90 3.55
F-statistic: 58.19 on 3 and 36 DF, p-value: 6.967e-14 esicuals : =

Analysis of covariance (ANCOVA)
Analysis of covariance defines a statistical model that allows for different intercepts and slopes with
respect to a covariate x in different groups:

Y, ~ Nﬂrm:zf[afi. + Bx, ::rl)

The parameters are now the intercept for the first factor level; the differences in the intercepts for
each factor level other than the first; the slope with respect to x for the first factor level; and the
differences in the slopes for each factor level other than the first.
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3. Nonlinearity

One of the common situations we deal with in ecological data is that relationships between Y and X
are more often than not nonlinear. There are a variety of methods for dealing with nonlinearity in
regression problems.

Linearizing transformations

One option is to try and find a transformation of the parameters that linearizes the relationship
between Y and X and then use the familiar general linear model (above). For example, if Y increases
exponentially as function of X:

Y ~ .?ﬁ.-'armaf(eh:'h-x= JJ.]

we could log transform both sides of the equation and treat the model as a simple linear regression,
as follows:

log(Y) ~ Normal(b, + bx, o)

Before computers were ubiquitous, a lot of ingenuity went into developing transformation methods
to linearize common functions. However, transforming variables changes the distribution of the
error as well as the shape of the dependence of Yon X. Ideally we’d like to find a transformation
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that simultaneously produces a linear relationship and makes the errors normally distributed with
constant variance, but these goals are often incompatible. If the errors are normal with constant
variance, they won’t be after the transformation to linearize f{x). Thus, linearizing transformations
are not the ideal solution and other methods (below) are generally preferred.
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Polynomial regression
Another option is to fit a polynomial regression by adding extra covariates that are powers of the

original variable (x7, x’, ...): quadratic if just the x” term is added, cubic if both the »” and »” are added,
and so on for higher-order terms. For example, the quadratic regression model is:

¥ ~ Narmaf(ﬁ:. + Bx + byx?, o)
Note, the polynomial regression model allows nonlinear relationships between Y and X to be
expressed, but it is still a general linear model, since it is linear in the parameters, and has the usual
requirements of independence, normal errors and constant variance. Polynomial regression is quite
flexible in fitting a wide variety of shapes: quadratic terms allow for humps, cubic terms allow for
inflections, and powers of 4 allow for local maxima. However, polynomial models rarely allow for a
mechanistic interpretation of the parameters and are thus typically used phenomenologically to fit
nonlinear patterns in the data.
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Additive models

Another option is to fit an additive model (or more generally, a generalized additive model, or
GAM), which fits a smoothing curve through the data but keeps the requirements of independence,
normal errors and constant variance. Additive models are purely phenomenological since the fits are
purely data-driven and not based on any mechanistic understanding of the underlying population. In
R there are two main packages for GAM: the gam package and the mgcv package. The mgev
package is more advanced and allows for cross-validation and generalized additive mixed modeling
(GAMM) including spatial and temporal correlations as well as nested data and various
heterogeneity patterns. Cross-validation is a process that automatically determines the optimal
amount of smoothing.

The basic GAM model is:
Y ~ Normal(b, + f (x). o)

Note that the only difference between the simple regression model presented above and the GAM
model is the replacement of 4,x by the smoothing curve f{x). The linear regression model gives us a
formula and the relationship between Y and X is quantified by an estimated regression parameter
plus confidence intervals. In a GAM, we do not have such an equation. We have a smoother, and
the only thing we can do with it is plot it. This does not mean that we cannot predict from this
model; we can, but not with a simple equation.



Landscape of statistical methods: part 1 17

There are many different types of smoothers in GAM. The simplest smoother is referred to as
LOESS smoothing, which involves applying local linear regression. Briefly, for each target value of
X, a window around this value is chosen and all points in this window are used in a local linear
regression analysis to predict the value of X. This process is repeated for every target value of X,
essentially by moving the window along the X gradient and getting a new predicted value for each
target value of X. The curve connecting all of the predicted values is called LOESS smoothing.
Alternatively, we can apply a weighted linear regression, where the weights are determined by the
distance (along the X axis) of the observations from the target value, which is called LOWESS
smoothing. It is also possible to use polynomial models of any order; although typically the order is
two (quadratic), which may be referred to as local polynomial regression. One major difficulty with
these types of smoothers is finding the optimal span width, or window size, which is a matter of
bias-variance tradeoff: the narrower the window, the better the fit (i.e., less bias), but the greater the
variance or uncertainty (resulting in wide confidence bands). This can be done subjectively based on
visual inspection of the smoother and the residuals. Another option is to use AIC to pick the “best”
span.

The mgcv package has a wide variety of smoothers plus a built-in cross-validation procedure for
choosing the optimal amount of smoothing. The most commonly used smoother in mgcv is a cubic
regression spline, although several others are available. Briefly, for the cubic regression spline
method, the X gradient is divided into a certain number of intervals. In each interval, a cubic
polynomial regression is fitted, and the fitted values per segment are then glued together to form the
smoothing curve. The point where the intervals connect are called knots. To obtain a smooth
connection at the knots, certain conditions are imposed, which we need not worry about here. Thus,
for a cubic regression spline, the smooth function in the basic GAM model above is:

f(X) = by + bx + byx* + bx’

The problem boils down to finding the values of 4,, b,, b,, and b, for each segment, which can easily
be done using ordinary least squares, and finding the optimal number of intervals. The details of
how to find the optimal number of intervals goes beyond the scope of this chapter but essentially
involves minimizing an objective function that includes a penalty for adding each additional knot so
that the number of intervals is kept at a minimum to avoid overfitting the data. The objective
function is based on a jackknife cross-validation procedure that involves leaving each observation
out in turn, estimating the smoother using the remaining n-1 observations, predicting the value of
the held-out observation using the estimated smoother, computing the difference between the
predicted value and real value, and summing the squared differences across all observations.
Essentially, the number is knots is selected such that the sums of squared prediction residuals is
minimized subject to a penalty for adding each additional knot.

Note, the basic GAM model can easily be extended to include additional explanatory variables,
including both covariates and factors, as well as interactions between explanatory variables.
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Nonlinear least squares

A final option is to fit a nonlinear regression model using the procedure of nonlinear least squares
(NLS). R uses function nls() for this procedure. Nonlinear least squares models relax the
requirement of linearity (in the parameters) but keep the requirements of independence, normal
errors and constant variance. An example is the Ricker model with normal errors:

T 7 -hx 2
Y -~ ‘?‘vﬂrmﬂi(b_:,xe e o )

Note, the Ricker model is linear with respect to 4, but nonlinear with respect to 4,; thus, not only is
the relationship between Y and X nonlinear, the model itself is nonlinear since it cannot be
expressed as a linear function of the parameters. The modern way to solve nonlinear models such as
this is to minimize the sums of squares (equivalent to minimizing the negative log-likelihood)
computationally, since an analytical solution is not possible. Restricting the variance model to
normally distributed errors with constant variance allows the use of specific numeric optimization
methods that are more powerful and stable than the generalized algorithms that can accommodate
other error distributions (such as generalized nonlinear least squares, gnls).

Fitting models with both nonlinear covariates and categorical variables (the nonlinear analogue of
ANCOVA) is more difficult. Two functions from the nlme package, nlsList() and gnls() can handle
such models, the latter being much more flexible.
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4. Nonlinearity and nonnormal errors (generalized linear models)

One of the major assumptions of the general linear model and the modifications we discussed above
for dealing with nonlinear deterministic relationships (additive models and nonlinear least squares) is
that the errors are normally distributed. Not surprisingly, in ecological data this assumption is not
met more often than it is met, so we need alternative methods that can handle nonlinear models
with nonnormal errors. Generalized linear models (not to be confused with general linear models) allow
us to analyze models that have a particular kind of nonlinearity and particular kinds of nonnormally
distributed (but still independent and constant) errors. Generalized linear models (GLMs) can fit any
nonlinear relationship that has a /Znearizing transformation. That is, if y = f(x), there must be some
function F such that F(f(x)) is a linear function of x. Previously we said that linearizing
transformations were challenging because they change the distribution of the errors — often in bad
ways. GLMs are special in this regard because they use the function F to fit the data on the
linearized scale (F(y) = F(f(x))) while calculating the expected variance on the untransformed scale in
order to correct for the distortions that linearization would otherwise induce. In GLM jargon F is
call the /nk tunction.
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There are a variety of link functions for some of the most common nonlinearity problems. In each
case, the link function serves to linearize the corresponding nonlinear function:

Link function Nonlinear function
logit [ e*
v = logl 2 y= ——
1-y b4 e
log x = log(y) y =&

square root

inverse 5 y v = y
y T Tl

The class of nonnormal errors that GLMs can handle is called the exponential family. It includes the
poisson, binomial, gamma and normal distributions. Each distribution has a standard link function
that makes sense for the typical situation. For example, the logit link is standard for a binomial
distribution, which in combination is commonly referred to as logistic regression. The logit
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transformation converts unconstrained values into values between 0 and 1, which are appropriate as
probabilities in a binomial model. This is quite useful when dealing with binary response data (0 or 1
data) or proportional response data (0-1), both quite common in ecology. Similarly, the log link is
standard for a poisson distribution, which in combination is commonly referred as a log-linear
model or simply poisson regression. This is quite useful when dealing with count data (non-negative
integer values), which is also quite common in ecology.

GLMs are fit by a numerical optimization process called #feratively reweighted least squares, which
overcomes the basic problem that transforming the data to make them linear also changes the
variance. The key to this procedure is that given an estimate of the regression parameters, and
knowing the relationship between the variance and the mean for a particular distribution (which we
do for all of the exponential family distributions), one can calculate the variance associated with each
point. With this variance estimate, one reestimates the regression parameters weighted each data
point by the inverse of its variance; the new estimate gives new estimates of the variance; and so on.
This procedure quickly and reliably fits the models, without the user needing to specify starting
values for the parameters.

GLMs combine a range of nonnormal error distributions with the ability to work with some
reasonable nonlinear functions. Importantly, they also use the same basic model specification
framework as general linear models (Lms).

Just as linear models can be morphed into generalized linear models to accommodate nonlinear
relationships and nonnormal errors, additive models can be modified into generalized additive
models (GAMs) to accommodate nonnormal errors in a similar fashion.
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5. Heterogeneous errors

One of the most important assumptions of linear models (LMs), generalized linear models (GLMs),
additive models (GAMs), and nonlinear least squares (NLS) is that the variance is constant — the
homogeneity of variance or homoscedastic variance assumption. Not surprisingly, in ecological data
we often encounter situations were this assumption is not met — a problem we refer to as heferogeneity.
Failure to meet this assumption in the above models may result in parameter estimates with
incorrect standard errors and test statistics such as the I statistic and t statistic no longer following
their respective distributions, which invalidates the use of these test statistics for assessing statistical
significance.

One approach for dealing with heterogeneity is to try a data transformation, such as a log
transformation, which sometimes can work to address the issue but also can be risky because data
transformations change the distribution of the error, e.g., it may make normally distributed errors
become nonnormal after the transformation. Heterogeneity is often interesting ecological
information that we may not want to throw away with a data transformation just because it is
statistically inconvenient. With a little bit of extra mathematical effort, heterogeneity can be
incorporated into the models and can provide extra ecological information.
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There are a number of options for modeling the variance structure. One option is to use one of the
common heterogeneous variance structures. One of these common structures is called the fixed
variance; it assumes that the variance is proportional to the value of a covariate. For example, the
variance may increase as the predictor variable x increases, which involves adding no additional
parameters to the model. There are several other common structures, including those shown here.
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Generalized least squares (GLS)

A linear model using any one of these common variance structures can be fit with method of
generalized least squares (GLS). In the example shown here, the simple linear regression model with
heterogeneous errors is fit using the standard linear model (LM), which assumes constant errors, and
using generalized least squares with a power variance structure. The variance power structure allows
the variance to increase as a power of a covariate, in this case x. The residual plots reveal that the
LM model results in nonconstant residuals, as expected, whereas the GLS model deals with this
issue effectively. In addition, we can use likelihood ratio tests (in this case because the models are
nested) and/or AIC to compare the models. In this case, the AIC is considerably smaller for the
GLS model and the LRT indicates that it is in fact significantly better than the Im model.
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Generalized nonlinear least squares (GNLS)

We can account for heterogeneous errors in nonlinear models as well. In the example shown here, a
Ricker model is used to produce a nonlinear relationship between Y and X. In addition to the
obvious nonlinear pattern, which cannot easily be linearized, there is a clear indication that the
variance is not constant over the range of X it appears to increase in relation to X. As in the
previous example, we can account for the heterogeneity in the model. If the errors are normally
distributed (but heterogeneous), the model can be fit with the method of generalized nonlinear least
squares (GNLS), which effectively combines the nonlinear modeling approach of nonlinear least
squares (NLS) with the heterogeneous variance modeling approach of GLS. In the example shown
here, the GNLS model is clearly a better model based on AIC, even though the fit doesn’t appear to
be all that different and the residual plots appear to be only marginally better than the NLS model.
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Customized models for nonlinear errors

If the errors are normally distributed, but heterogeneous, then the previous methods of GLS (for
linear models) and GNLS (for nonlinear models) can be used. However, if the errors are
nonnormally distributed, then an alternative method must be used. Fortunately, we can analyze just
about any customized model using maximum likelihood (or Bayesian) estimation methods. Indeed,
it is rather simple to incorporate changes in variance into an ecological model. All we have to do is
define a sensible model that describes how a variance parameter changes as a function of one or
more predictor variables. In the example shown here, the data show a typical triangular, or “factor-
ceiling” or “limiting factor” profile of many ecological data sets. The triangular distribution is often
caused by an environmental variable that sets an upper limit on an ecological response rather than
determining its precise value. In this example, the data represent counts and thus a poisson or
negative binomial error distribution is appropriate. Here, I fit a negative binomial model with several
options: 1) mean as a either a linear function of x or an exponentially decreasing function of x, and
the overdispersion parameter £ equal to a constant; 2) mean and £ as exponential functions of x;
and 3) mean as a constant and £ as an exponential function of x. The results shown here indicate
that the third option is the best.

Note, the same general strategy applies for the variance parameter of other error distributions such
as the variance of a normal distribution, the shape parameter of the Gamma distribution, or the
overdispersion parameter of the beta-binomial distribution. Just as with deterministic models for the
mean value, the variance might differ among different groups or treatment levels, might change as a



Landscape of statistical methods: part 1 27

function of a continuous covariate as in the example above, or might depend on the interactions of
factors and covariates (i.e., different dependence of variance on the covariate in different groups).
Just the variance, or both the mean and the variance, could differ among groups. There are no
bounds the variations that can be analyzed, and the Likelithood Ratio Tests (LRT) or AIC values can
be used to choose among the alternative models.
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