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1. What is stochastic simulation?

Simulation is sometimes called forward modeling, to emphasize that we pick a model and parameters
and work forward to predict patterns in the data. Simulation is the act of imitating a real system – in
our case an environmental system. The “stochastic” part of the name simply means that the
simulation model has a stochastic component so that each simulated pattern is a random outcome
of the model. Typically, stochastic simulation involves repeatedly generating hundreds or even
thousands of simulated patterns and then summarizing the range of variation in the patterns.
Simulation is used by environmental scientists to gain insight into the functioning of environmental
systems (more on this below).
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2. Simulating static environmental processes

Static environmental processes, where the data represent a snapshot of some environmental system,
are relatively easy to simulate. For static data, we can use a single function to simulate the
deterministic process and then add heterogeneity or stochasticity. Often, however, we will chain
together several different functions and probability distributions representing different stages in an
environmental process to produce surprisingly complex and rich descriptions of environmental
systems.

Example: We  illustrate the process of simulating a static environmental process using a simple
ecological model based on the now familiar Oregon birds data set. For this example, let’s examine
the relationship between brown creeper abundance and the extent of late-successional forest across
30 subbasins in the central Oregon Coast Range. For now, we will ignore the real data and simply
simulate some data based on a particular statistical model.
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Let’s assume a linear model (deterministic component) with normal errors (stochastic component),
which we can write as:

i iY  ~ Normal(mean=a+b*X , sd=ó)

which specifies that Y (brown creeper abundance) is a random variable drawn from a normal
distribution with a mean a+b*X and standard deviation ó. In this notation, a and b are parameters of
the deterministic linear model (intercept and slope, respectively), X is data (values of the explanatory
variable, %late-successional forest), and ó is a parameter of the stochastic component of the model

i(the standard deviation of the normally distributed errors). This means that the i  value of Y, y , isth

iequal to a+b*x  plus a normally distributed error with mean equal to the linear model and standard
deviation ó.
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Next, we create a simulation for our linear model that draws a vector y  from the specified model
given values of x and the model parameters: a, b and ó. Note, each draw results in a different vector
y  because of the stochastic part of the model – a random error is added to each fitted value from the
deterministic model. Thus, each simulated data set represents a single stochastic outcome of the
model. 

There are two ways to think
about this. First, because for the
normal distribution the mean is
independent of the variance
(error), we can compute the
mean from the deterministic
portion of the model and then
literally add an error drawn from
a normal distribution with a
mean=0 and sd=ó, as shown in
the top figure. This is because
the deterministic model gets us
to the mean and the error model
gives us a distribution about the
mean; in this way we are
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centering the normal on the mean, which is the same as specifying a mean of zero. In the example
shown here, for the first random point taken at x=0.71, we compute the mean from the linear
model to be equal to 0.103 and then add a randomly drawn error from a normal distribution with
mean=0 and sd=0.14, which in this example was an error of -0.188, giving a value of -0.085 for the
first random point.

Alternatively, we can compute the random value of y directly from the normal distribution with a
mean=0.103 (from the linear model) and sd=0.14, which in this case produced a value of -0.085.
This is the same as saying, if my expected value is 0.103 and my spread is 0.14, then pick a value of y
at random from a normal distribution defined by those parameter values. This is shown in the
second figure.

We repeat this process for as many points as we desire. The figures below illustrate the process for
the second random point. 
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Next, we plot the simulated data to see what we got. Remember, each simulated data set represents a
new set of points randomly drawn from the same model. If we run the simulation many times, we
get lots of new data sets, each one representing a single stochastic outcome of the model. There are
lots of things we can do with a simulation like this – which we will explore later. For now, it is
sufficient to understand how we simulated a static environmental process.
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3. Simulating dynamic environmental systems

The previous example dealt with a static environmental process; the data represented a snapshot of
the environmental system. However, environmental systems are dynamic – they change over time.
Therefore, many problems require a dynamic modeling approach. Dynamic models are models that
describe how environmental processes drive environmental systems to change over time. Dynamic
models are a vast and increasingly complex subject and therefore one that we cannot hope to cover
in depth. The most common dynamic modeling application involves modeling population change
over time. Here, we will simply introduce dynamic models by constructing a very simple population
transition matrix model. Knowing how to simulate dynamic models is important because fitting
dynamic models to data is so tricky that it is essential to model simulated data to confirm that our
inference methods work. 
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Let’s build a dynamic population model for a single closed population of a local population of
marbled salamanders without immigration or emigration. We will represent four age classes: juvenile,
subadult1, subadult2, and adult, corresponding to year 0, 1, 2, and 3+. To control the key population
vital rates, fecundity (number of young produced per breeding female per timestep) and survival
(probability of surviving between timesteps), we will employ a Leslie transition matrix, which records
the fecundity and survival rates for each age class in the population. 

Briefly, the transition matrix defines how the population will change at each time step based on
fecundity (i.e., addition of new individuals through reproduction) and mortality (i.e., loss of
individuals through death). Specifically, the transition matrix contains the age-class specific
fecundities in the first row. In the example shown here, only the adults produce offspring, and they
do so at the average rate of 22.32 young per breeding female per year. Survival rates for each age
class are given in the remaining rows. For example, in this example, the juvenile age class individuals
survive to the subadult1 age class at the average rate of 0.14. Thus, for every 100 young that are
produced, only 14 will survive on average to the next year. Similarly, adult survival rate is given as
0.66, so that on average 66 out of 100 adults will survive to the next year. The subadult1 and
subadult2 age class individuals each survive at a rate of 1.0, which means that we pass individuals
through the subadult stages without any mortality; this parameterization is necessary to account for
the fact that our field estimates of juvenile survival represent survival from juvenile to adult stages
over a three year period and that we want to use a one year timestep in the model (which
corresponds to the annual breeding cycle) rather than a three year timestep. For our purposes, it is
not critical to understand this model parameterization further. 
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The population model works as follows. First, we define an initial population vector which gives the

0number of individuals in each age class at the start of the simulation (P ), so in our case it is a vector
of length four. Then we multiple this population vector by the transition matrix (T), which accounts

1for age-specific fecundity and survival, to determine the population vector for the next timestep (P ).
Lastly, we repeat this process for as many timesteps as we desire. The result is a population
trajectory over time, as shown here in the plot of adult population size (y-axis) over time (x-axis). 

If we simulate the population in this manner, is our dynamic model stochastic? 

No, we have not introduced any source of random variability to the model. The population
trajectory is absolutely predetermined by the starting population vector and the values in the
transition matrix. 
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How might we make this model stochastic to better reflect the true nature of population dynamics?
First, we have to recognize that our estimates of fecundity and survival are only just that – estimates.
We do not know what the true rates are, we only have our uncertain estimates. Moreover, the
population vital rates are not likely to remain constant year after year, since there are numerous
factors affecting these vital population processes every year. For example, a drought in one year may
cause fecundity rates to drop near zero; a disease outbreak may cause survival rates to drop
temporarily; favorable weather conditions in the fall and winter might leave more juveniles alive for
the following year than usual, and so on.

The easiest way to make this dynamic
simulation model stochastic (and thus more
realistic) is to incorporate random variation
into our vital rates. We do this by drawing our
vital rates from a random distribution (e.g., a
random normal distribution) at each timestep.
Consequently, in the first timestep the adult
fecundity rate might be 35.2, while in the
second timestep it might be 0.5. Let’s rerun
the model, only this time let’s draw our
fecundity and survival estimates from random
normal distributions with pre-specified means
and standard deviations, and see what happens. Now the population trajectory is no longer
predetermined. Each time we run the simulation we get a different population trajectory. We now
have a truly stochastic and dynamic simulation model. There are lots of things we can do with a
simulation model like this – which we will explore later. For now, it is sufficient to understand how
we simulated a dynamic ecological process.
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4. Applications of stochastic simulation

Environmental scientists use stochastic simulation in all sorts of ways and, thanks to increasing
computing power and the accessability of programming languages like R, the use of stochastic
simulation in environmental modeling is increasing rapidly. Some of the most common uses are to:  

• Test estimation procedures
• Evaluate statistic models
• Conduct power analysis
• Evaluate model sensitivity
• Conduct virtual experiments
• Predict system behavior
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4.1 Te s t e s tim atio n  p ro c e d u re s

We can use stochastic simulation to test our estimation procedures. Since we never know the true
answer to an environmental question – we only have imperfect measurements with which we’re
trying to get as close to the answer as possible – simulation is the only way to test whether we can
correctly estimate the parameters of an environmental system. It’s always a good idea to test such a
best-case scenario, where we know that the functions and distributions we’re using are correct,
before we proceed to real data.

Example.–We continue with our previous example of modeling brown creeper abundance in
relation to the extent of late-successional forest across 30 subbasins in the central Oregon Coast
Range. Let’s see how well our estimation procedure estimates the true population parameters. Let’s
assume the same values as before for each of the parameters of our linear model: a=0.099, b=0.006
and ó=0.14. Next, let’s simulate some data from this model. Remember, each simulation produces a
different outcome because it is a stochastic model. Now, let’s use an estimation procedure to
estimate the population parameters based on the simulated ample data set. For this purpose, we will
use the method of ordinary least squares which, under the assumption of independent and normally
distributed errors, gives us the maximum likelihood estimates, or the most likely parameter values;
i.e. the ones that make our sample data the most likely outcome under hypothetical repeated
sampling. Here, it is not important to understand the particular estimation method, only that we
have chosen one and wish to see whether it can estimate the known population parameters.
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The results of our estimation procedure are shown here. The true intercept (a) is likely to be
between 0.029 and 0.251 with a 95% level of confidence; that is to say, there is a 95% chance that
the true intercept falls between these values. Similarly, the true slope (b) is likely to be between 0.004
and 0.008 with a 95% level of confidence. Lastly, the standard deviation (ó) of the errors – the
deviations of the observed values from the fitted or predicted values, was 0.151, which is pretty
close to the true value. Thus, we can conclude that our estimation procedure did a pretty good job
of estimating the population parameters. Granted, with a simple linear model, it is not too surprising
that our estimation method is effective. However, with more complex models and more
sophisticated estimation procedures, the end result is not always going to be so obvious.
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4.2 Evalu ate  s tatis tic al m o d e ls

After we collect data, we can use stochastic simulation to explore the functions and distributions we
chose for our statistical model. If we can choose parameters that make the simulated output from
those functions and distributions look like our real data, we can confirm that the model is reasonable
– and simultaneously find a rough estimate of the parameters (which we may need in the estimation
procedure).

Example.–We continue with our previous example of modeling brown creeper abundance in
relation to the extent of late-successional forest across 30 subbasins in the central Oregon Coast
Range. Let’s see how well our statistical model approximates the patterns observed in the real data.
First we simulate a data set using our linear model with normal errors and plot the simulated data
with the real data. Is the simulated pattern of points the same as the original pattern? Are there any
notable discrepancies? 



Stochastic Simulation         16

We might want to run the model several more times to see how variable the results are – it is a
stochastic model after all. After running the model several times, are there any notable problems
with the model? In other words, does the model reproduce the patterns in the original data perfectly
or are there issues with the spread of values or with the generation of illogical values? 

One problem with the use of the normal distribution is that it is unbounded on the lower limit. Thus,
negative values are possible. In this case, because the y-intercept is close to 0, the simulation is likely
to produce negative values occasionally when x60. Since brown creeper abundance cannot be
negative, this is an undesirable behavior of the model. 

Another apparent problem with the use of the normal distribution is that the mean and variance are
independent, which translates into a constant variance across the full range of x. In other words, as
the mean of y changes as x increases, the variance is assumed to stay the same. This does not appear
to be the case with the brown creeper data, as the variance appears to increase with the mean.
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One way to fix this problem is to use the gamma distribution, which allows only positive value and
has a variance that is dependent on the mean, which allows the variance to increase with the mean.
Note, the gamma distribution has two parameters called shape and scale, instead of the mean and
variance parameters of the normal distribution. Scale is equal to the mean divided by shape, where
the mean is the deterministic part of the model or the expected value for any given value of x. See
the lecture on probability distributions for more detail on the gamma distribution. Now, let’s
simulate data using our linear model but this time with gamma errors instead of normal errors, and
like before, let’s replicate the simulation several times and plot the simulated data with the real data.
How does the simulated pattern compare to the real data using the new model? Are there still
problems with the model?

iOne issue that arises with the gamma distribution is that y =0 is not allowed, so we never predict
zeros for the response, even though zeros are legitimate values of the response variable, brown
creeper abundance, in this example. This appears to be the only notable problem with this model.
Even in this simple example, stochastic simulation has helped us choose an appropriate model. In
more complex situations, the use of stochastic simulation to evaluate and choose a statistical model
can be vitally important. 
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4.3 Co nd u c t p o w e r analy s is

Power analysis in the narrowest sense means figuring out the (frequentist) statistical power – the
probably of correctly rejecting the null hypothesis when it is false. While we are generally less
concerned with power analysis in the conventional sense of hypothesis testing, we are very
interested in the role of power analysis in addressing a much broader question: How do the quality
and quantity of our data and the true properties (parameters) of our environmental system affect the
quality and quantity of the answers to our questions about environmental systems? For any real
experiment or observation situation, we don’t know what is really going on (the “true” model or
parameters), so we don’t have the information required to answer these questions from the data
alone. But we can approach them by analysis or simulation. Historically, questions about statistical
power could only be answered by sophisticated analyses, and only for standard statistical models and
experimental designs such as one-way analysis of variance and linear regression. However, increases
in computing power have extended power analysis to many new areas. Stochastic simulation is a
powerful tool for conducting power analysis. It is a specific kind of simulation testing where we
explore how large a sample size we would need to get a reasonably precise estimate of our
parameters. The more precisely we can estimate our parameters, the more likely is it that we will be
able to reject our null hypothesis (if we have one) in favor of our alternative given that the null
hypothesis is actually wrong – which is the right thing to do. We can also use power analysis to
explore how variations in study design would change our ability to answer questions; e.g., which of
several alternative study designs would lead to the most precise estimates of our parameters?
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Example.–We illustrate the use of stochastic simulation for power analysis using the linear model
above. Let’s start by finding out whether we can reject the null hypothesis in a single experiment. To
do this, we simulate a dat set with a known parameters: intercept (a=0.099), slope (b=0.006) and
error (ó=0.14), and number of data points (n=30); then we estimate the parameters of the model
from the data (using an estimation procedure); then we compute the probability of observing the
data if in fact the null hypothesis (of no relationship between x and y) were true (we call this the p-
value); and then we see whether it is less than our specified alpha (á) criterion (usually 0.05). In this
example, we used ordinary least squares (see above) on the simulated data set and estimated the
slope parameter to be 0.007, and the probability is less than 0.001 that we would have observed a
slope this large if in fact the true underlying population slope was 0 (i.e, p<0.001). Pretty strong
evidence that the null hypothesis of no slope is wrong, so we reject the null hypothesis. This is the
correct thing to do because we know that the true slope from which this sample was drawn is 0.006,
not 0. However, to estimate the probability of successfully rejecting the null hypothesis when it is
false (the power), we have to repeat this procedure many times and calculate the proportion of the
time that we correctly reject the null hypothesis. We do so and find out that we correctly reject the
null hypothesis 1,000/1,000 times. So what is our power in this case? 
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But this is the power to detect a slope of roughly b=0.006 with a sample size of n=30, given our
specified statistical model (i.e., linear model with independent normal errors). Usually we don’t just
want to know the power for a single experimental design. Rather, we want to know how the power
changes as we change some aspect of the design, such as the sample size or the effect size (slope, in
this case). Thus, we have to repeat the entire procedure multiple times, each time changing some
parameter of the simulation such as the slope or the sample size. 

Shown in the figure above is how power changes as a function of the slope (effect size). The vertical
line shows the power for our initial slope estimate of 0.006. 

What is the power for a slope of say .002?

We can do the same thing for a gradient in sample sizes. Shown below is how power changes as a
function of the sample size, while holding slope constant at 0.006. The vertical line shows the power
for our original sample size of 30.
 
How much power is lost if we reduce the sample size from 30 to 20, or to 10?

What would happen if our model error doubled; i.e., if the residual variation (stochastic component)
about the expected value (deterministic component) doubled?
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We could repeat this process for other parameters such as the error component of the model, but
you get the idea. While we can do these power analysis simulations for one parameter at a time, it
might be more interesting to vary combinations of parameters, say of slope and sample size. Shown
here is how power changes as a function of the slope (effect size) and sample size, let both
parameters vary over reasonable ranges.

What does the power surface reveal about the relationship between slope and sample size? If we
wanted say a power of >0.8 to detect a slope of b=.002, how large would our sample size need to
be?
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4.4 Evalu ate  m o d e l s e n s itiv ity

We can use stochastic simulation to evaluate model sensitivity. Sensitivity refers to how much the
result changes per unit of change in each of the input parameters. The parameters with the greatest
sensitivity are the ones we need to worry about the most, since even little changes in their values can
have a relatively big impact on the results. Sensitivity analysis can be quite useful as a guide for
future studies, since it can direct future research towards the most sensitive parameters – the ones
that matter most. This can be especially important in complex multi-parameter models, where
complex interactions among parameters make it difficult to understand and predict the sensitivity of
the model to each parameter. Fortunately, sensitivity analysis is exceedingly simple with stochastic
simulation. We simply simulate the environmental system according to our model and vary each of
the input parameters over a range of values and compare the results. There are lots of options for
conducting the sensitivity analysis. For example, we might vary input values for each parameter by
±10% of our original estimates, and might do so one parameter at a time holding all others constant
at their nominal values or vary them all simultaneously by randomly sampling values from
distributions. Alternatively, we might vary each parameter over the range of uncertainty in our
original estimate to reflect that fact that the precision of our estimates might vary dramatically
among parameters.
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Example.–This example involves a spatially realistic population viability model for a metapopulation
of marbled salamanders in western Massachusetts. Here, we varied each of the major model
parameters by a fixed amount by sampling from a normal distributions with a mean set to our
nominal estimate and a coefficient of variation (spread) equal to 10%. We ran 1,000 simulations,
each time randomly generating parameter estimates from the above distributions, and computed the
risk of metapopulation extinction (by running 100 simulations and determining how many times the
metapopulation went extinct) under each set of parameter values. Lastly, using regression
procedures (not to worry about the details here) we calculated the expected absolute change in the
response variable per percentage change in the parameter. As shown in the figure here, our analysis
reveals that extinction risk is most sensitive to adult survival (adult.surv), less but roughly equally
sensitive to the breeding failure rate (cat.rate.adj), fecundity (hp.fecundity.v.scale), and juvenile
survival (j.to.a.surv), and insensitive to juvenile dispersal rates (disp.factor) and correlation among
sub-populations in fecundity (fec.cor). Moreover, these trends hold true across a broad range of
nominal breeding failure rates (x-axis). The y-axis represents the expected change in the response
per percent change in each parameter.  Error bars indicate 95 % confidence intervals and are not
shown within the grey region that represents points whose confidence intervals span zero
(insensitive). These results suggest that if we wish to estimate extinction risk well, it is more
important that we derive accurate and precise estimates of adult survival rate than juvenile dispersal
rates.
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4.5 Co nd u c t v irtu al e xp e rim e n ts

We can use stochastic simulation to conduct virtual experiments that are not practical, possible, or
desirable in the real world. For example, it would not be practical to conduct a field experiment to
determine how forest management practices affect the wildfire disturbance regime of a forested
landscape over an environmentally meaningful time scale, since the dynamic occurs over centuries
not years. In addition, it would not be ethical to conduct a field experiment to determine the level of
anthropogenic stress necessary to cause a species to go extinct.  Simulation models allow us to
conduct such studies in the virtual world instead of the real world. Can you think of other examples
of where computer simulation is the highly preferred or even the only way to conduct the desired
experiment?

Example.–We continue with our spatially realistic metapopulation viability model. Here, we use our
stochastic simulation model to evaluate the impacts of alternative forest management scenarios on
metapopulation extinction risk – the probability that the metapopulation will go extinct over a 100-
year period. Briefly, as part of a former class exercise, each group of forest managers was asked to
devise a forest management plan to harvest timber while minimizing adverse impacts to the marbled
salamander metapopulation, subject to certain objectives (e.g., extract a certain amount of timber)
and constraints (e.g., minimize stream crossings).
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Some of the results are shown here. The figures on the left depict two different harvesting scenarios
in which stands were partially cut for timber and roads were constructed for access. The altered land
cover was input to the model and affected population vital rates such as adult upland survival,
juvenile dispersal between ponds, etc. The figure on the right depicts the probability of quasi
extinction under the various implemented scenarios. Quasi extinction is the probability that the
metapopulation will fall below a threshold level of abundance sometime during the simulation
period (100 years in this case). Thus, draw a vertical line up from any particular quasi extinction level
on the x axis, say 50, until you intercept the curve. From that point draw a horizontal line to the y
axis. The value of the y axis gives the probability that the metapopulation will fall below that quasi-
extinction level during the next 100 years. The best scenario is one that minimizes quasi extinction
risk. 

Clearly, there is no easy way to conduct an experiment like this in the real world, since we can only
implement one scenario on the study site, and we would have to wait 100 years for the result.
Stochastic simulation provides the opportunity to explore the possible outcomes of hundreds of
scenarios without ever cutting one tree or building a single foot of new road. Of course, for the
results to be trustworthy, we have to trust the model and its parameterization.
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4.6 Pre d ic t s y s te m  b e h av io r

Lastly, we can use stochastic simulation to examine the behavior of our environmental system in
order to understand qualitative patterns and/or make predictions. In some ways, this purpose
subsumes all of the previous applications, since they too help us understand our model and our
system and help us make predictions, e.g., that a sample size of n will give us the power we want.
However, in some cases a stochastic simulation model is constructed for the primary purpose of
making predictions of system behavior and quantifying the uncertainty in those predictions. In such
cases, the uncertainty in our parameter estimates is used in the randomization process to produce
uncertainty in our estimates of the system behavior or model output.

Example.–We continue with our spatially realistic metapopulation viability model. Here, we use our
stochastic simulation model to predict the future fate of the metapopulation and to quantify the
uncertainty in our prediction. Note, this is very similar to the previous example, where we evaluated
alternative scenarios or model parameterizations, except here we are interested in a single scenario
and the focus is on quantifying the model outcome in terms of uncertainty.
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In the example here, the data from the marbled salamander field study were combined with
published studies to parameterize the spatially realistic metapopulation viability model. The figure
shown here depicts the risk of metapopulation extinction under 1,000 different model
parameterizations in which two key model parameters, reproductive failure rate and adult survival
rate, were allowed to vary within the bounds of our uncertainty in these parameters. Based on these
simulation results, we can be 90% certain that metapopulation extinction risk within 100 years is
below 37%. If we find this level of uncertainty unacceptable, we can direct additional research to
improve our estimates of reproductive failure rate and adult survival rate.
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