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1. Bayesian parametric inference

As we have seen, the method of ordinary least squares can be used to find the best fit of a model to
the data under minimal assumptions about the sources of uncertainty and the method of maximum
likelihood can be used to find the best fit of a model the data when we are willing to make certain
assumptions about how uncertainty enters into the system. When a parametric approach can be
justified, Bayesian inference offers an alternative to Maximum Likelihood and allows us to determine
the probability of the model (parameters) given the data – something we cannot do with maximum
likelihood. Bayesian inference is especially useful when we want to combine new data with prior
knowledge of the system to make inferences that better reflect the cumulative nature of scientific
inference.
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2. Parameter estimation the Bayesian way

The next step is to fit the model; i.e., estimate the model parameters. Recall from our earlier chapter
on inference frameworks that the Bayesian framework says that the experimental outcome – what
we actually saw happen – is the truth, while the parameter values or hypotheses have probability
distributions. The Bayesian framework solves many of the conceptual problems of frequentist
statistics: answers depend on what we actually saw and not on a range of hypothetical outcomes, and
we can legitimately make statements about the probability of different hypotheses or parameter
values. The major catch is that to accomplish this, we have to specify our prior beliefs about the
probability of different hypotheses, and these prior beliefs actually affect our answers. More on the
pros and cons of Bayesian inference later; first, let’s see how it works.  

What we need is an objective method of computing parameter estimates from the data that are in
some sense the ‘best’ estimates of the parameters for the data and this particular model. Thus, the
goal is the same as in the frequentist maximum likelihood approach. The difference is in how they
go about trying to achieve this goal. Whereas the frequentist approach seeks to find parameter
values (maximum likelihood estimates) that if true would make the observed data the most likely
outcome (under hypothetical repeated sampling), the Bayesian approach seeks to find the most
probable parameter values (hypotheses) given the data and some prior knowledge. The Bayesian
approach produces estimates of the probabilities of alternative parameter values (or hypotheses)
based on all the available data, including previously collected data – which we might argue is the goal
of science. Bayes’ Theorem provides a way of doing this. 
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Conditional Probability:

To understand Bayes’ Theorem and how it applies to parameter estimation, we first have to
understand some basic probability theory. Consider an experiment that can produce a variety
outcomes. We will denote the entire collection of outcomes as S and represent it as a polygon of
some “area”. A smaller collection of outcomes, A, contained within S has probability defined as the
“area” of A divided by the “area” of S, with “area” suitably defined. Different probability models
give different definitions of what “area of S” really means. Suppose we know that event A occurred.
What is the probability that a different event B occurred, given (conditioned on) the knowledge
about A? If A occurred, then the collection of all possible outcomes of the experiment is no longer
S, but must be A. Thus, the conditional probability of B given A is:

Pr{B|A} = probability of event B given that A occurred (Eq. 1)
= (area common to A and B) / (area of A)

The vertical line in the probability statement on the left-hand side of the equation means “given” or
“conditioned on”. Dividing the numerator and denominator of the right-hand side of equation 1 by
the area of S, to convert “area” to probability, we have:

Pr{B|A} = Pr{A 1 B} / Pr{A} (Eq. 2)
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where “1 ” stands for “and” or “intersection”. By analogy, since A and B are fully interchangeable
here, we must also have:

Pr{A|B} = Pr{A 1 B} / Pr{B} (Eq. 3)

Equation 3 is how we define “conditional probability”: the probability of something given
(conditioned on) something else.
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Bayes Theorem:

With this simple conditional probability rule, we can now derive Bayes’ Theorem or Bayes’ Rule,
discovered by Reverend Thomas Bayes and published two years after his death in 1763. Bayes’ Rule
can be described a variety of ways, ranging from a very generalized form to a very specific form as
used in model inference, as follows:

(1) By rearranging equation 3 to isolate Pr{A 1 B} on one side of the equation and substituting the
result into equation 2, we get the following:

Pr{B|A} = Pr{A|B}Pr{B} / Pr{A} (Eq. 4)

which is called Bayes’ Rule in its most general form, where A and B can represent anything. In this
form, Bayes’ Rule states that the probability of event B given the occurrence of event A is equal to
the probability of event A given that event B has occurred times the probability of event B
occurring, divided by the probability of event A occurring.
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(2) If we substitute “hypothesis” (or “model”) for B and “data” for A in equation 4, we get the
following:

Pr{hypothesis|data} = Pr{data|hypothesis}Pr{hypothesis} / Pr{data}

or simply:

Pr{H|D} = Pr{D|H}Pr{H} / Pr{D} (Eq. 5)

In this context, Bayes’ Rule states that the probability of the hypothesis (parameter values) given the
data is equal to the probability of the data given the hypothesis (the likelihood associated with H),
times the probability of the hypothesis, divided by the probability of the data. The left-hand side of
the equation gives the probability of any particular parameter value(s) given the data.
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(3) Following the notation we used to describe likelihood, we can write Bayes’ Rule as follows:

(Eq. 6)

where:

m• ö  is the population parameter(s) to be estimated; we are looking for the value(s) with the
maximum probability given the data,

m• Pr{Y|ö } is the likelihood of observing the data for different values of ö, expressed as a
likelihood function,

m m• Pr{ö } is the “unconditional” prior probability of ö  expressed as a probability distribution
summarizing our prior views about the probability of ö taking on different values,

• Pr{Y} is the “unconditional” probability of the data, which is equal to the expected value
(mean) of the likelihood function; this standardization means that the area under the posterior
probability distribution (below) equals one, and

m m• Pr{ö |Y}is the posterior probability of ö  conditional on the data being observed, expressed as
a probability distribution summarizing the probability of ö taking on different values by
combining the prior probability distribution and the likelihood function. Note, the “posterior”
refers to the fact that it reflects the probability of the parameter values after observing the data,
whereas the “priors” reflect the probability of the parameter values before observing the data.
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(4) We can re-express Bayes’ Rule even more simply as follows:

Posterior probability % likelihood x prior probability (Eq. 7)

where “%” means proportional to, because the denominator Pr{Y}in equation 6 is simply a
normalizing constant that makes the posterior probability a true probability. Note that likelihood is
where our data comes in and is the same likelihood we used in maximum likelihood estimation.
Thus, the major difference between Bayesian estimation and maximum likelihood estimation is
whether prior knowledge is taken into account.

If Bayes’ Rule seems too good to be true, it’s because it might just be. There are a couple of major
problems with the application of Bayes’ Rule in statistical inference (that frequentists are keen to
point out): (1) we don’t know the unconditional probability of the data Pr{Y}, and (2) we don’t

mknow the unconditional prior probability of the hypothesis Pr{ö }– isn’t that what we were trying to
figure out in the first place. These problems have received considerable attention among statisticians
and have important implications, so let’s briefly consider each of these problems in turn.
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Prior probabilities:

Once of the major sources of controversy with Bayesian statistics is the use of prior probability
distributions in Bayes’ Rule – which is a necessity to make it work. Prior probabilities measure the
relative strength of belief in possible values of the parameter and can be of two general forms:

(1) Uninformative or “flat” priors.–In many cases, we have no (or only vague) prior knowledge to
suggest what value a parameter might take. Bayesian’s might argue that we always have some
knowledge and that it should be incorporated at what ever level it exists. However, others argue that
assuming prior ignorance is a conservative approach and helps overcome the criticism of Bayesian
statistics that subjectively determined prior opinion can have too much influence on the inferential
process. This gets at one of the major sources of philosophical contention between Bayesian’s and
frequentist’s. Nevertheless, we can represent prior ignorance with a uninformative prior distribution,
sometimes called a diffuse distribution because such a wide range of values of  ö is considered
possible. The most typical diffuse prior is a rectangular (uniform or flat) probability distribution,
which says that each value of the parameter is equally likely. Not surprisingly, when we use a flat
prior, the posterior distribution of the parameter is directly proportional to the likelihood function
and the “best” estimates will be the same. A flat prior can be considered a reference prior, a class of
priors designed to represent weak prior knowledge and let the data, and therefore the likelihood,
dominate the posterior distribution.
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(2) Informative priors.–The alternative is an informative prior, representing cases where we have
substantial prior knowledge about the value of the parameter. Here we might specify, for example, a
beta distribution about our prior expectation of the parameter value. The construction of
informative priors is one of the most contentious aspects of Bayesian inference, especially if they are
constructed from subjective opinion as opposed to previous empirical estimates. Bayesian’s claim
the use of informative priors is logical and consistent with the way we typically do science: we down-
weight observations that are inconsistent with our current beliefs, while using those in line with our
current beliefs to strengthen and sharpen those beliefs. Frequentist’s oppose any form of weighting
based on prior beliefs.
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Probability of the data:

The other major challenge with Bayesian statistics, which is purely technical and does not raise any
deep conceptual issues, is the problem of figuring out the unconditional probability of the data
Pr{Y}, the denominator in Bayes’ Rule. There are two situations we need to consider: (1) a set of
exhaustive, mutually exclusive discrete hypotheses (parameter values), and (2) a continuous set of
hypotheses.
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(1) Discrete hypotheses.–If we have a set of exhaustive and mutually exclusive hypotheses, we can
assume that one, and only one, of our hypotheses is true. Thus, in the geometric representation
shown here, the shaded ellipse represents D, the set of all possibilities that could lead to the
observed data. If one of the hypotheses must be true, then the unconditional probability of
observing the data is the sum of the probabilities of observing the data under any of the possible

1 nhypotheses. Referring to equation 3 rearranged, for N different hypotheses, H  to H , 

(Eq. 8)

Substituting equation 8 into equation 5 gives the full form of Bayes’ Rule for a particular hypothesis

i j iH  when it is one of a mutually exclusive set of hypotheses (H ). The probability of the truth of H  in
light of the data is:

(Eq. 9)
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(2) Continuous hypotheses.–If the set of hypotheses (parameter values) is continuous, then the
denominator must be obtained through integration, as follows:

(Eq. 10)

where h is a particular parameter value. Substituting equation 10 into equation 5 gives the full form

iof Bayes’ Rule for a particular hypothesis H  when it is one of a continuous range of possible values,

ih. The probability of the truth of H  in light of the data is:

(Eq. 11)

It turns out that for relatively simple cases it’s easy to sum or integrate the denominator either
analytically or numerically, and if we care only about the relative probability of different hypotheses,
which is usually the case, then we don’t need to integrate the denominator at all because it has the
same constant value for every hypothesis and we can therefore simply ignore it. This is good news,
because calculating the unconditional probability of the data can be extremely complex for more
complicated problems. Consequently, most current methods for estimating the posterior distribution
are based on a sophisticated technique known as Markov Chain Monte Carlo (MCMC) which does
not require us to calculate the unconditional probability of the data. The details of MCMC are
beyond the scope of this chapter, but suffice it to say that MCMC methods involve sampling the
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posterior distribution many times in order to estimate the posterior distribution, from which we can
extract useful summaries such as the mean of the sample posterior distribution.

Posterior probability:

All conclusions from Bayesian inference are based on the posterior probability distribution of the
parameter or an estimate of the posterior derived from MCMC sampling. This posterior distribution
represents our prior probability distribution modified by the current data through the likelihood
function. Bayesian inference is usually based on the shape of the posterior distribution, particularly
the range of values over which most of the probability mass occurs. The best estimate of the
parameter is usually determined from the mean of the posterior distribution.
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Example 1: Known priors – bird use of wildlife openings

Let’s begin with a simple example where we know the prior probabilities of a set of discrete
hypotheses. Let’s say we want to know the probability that a newly created wildlife opening will be

1 2used as breeding habitat by chestnut-sided warblers in the following classes: C  = not used, C  =

3present, but not breeding, and C  = present and breeding. This probability depends on the number
of wildlife openings nearby (<10 km) that are already used by chestnut-sided warblers (N). We have
measurements on chestnut-sided warbler use of wildlife openings from the field, and for each
opening we know the number of nearby openings that are used. Thus, if we calculate the fraction of

i jopenings in each use class C  with N nearby occupied openings, we get an estimate of Pr{N|C }. We

jalso know the overall fractions of openings in each class, Pr{C }; in other words, we know the
unconditional prior probability of each “hypothesis”. If we create a new opening, we know the
neighborhood occupancy level N from the spatial data on existing openings. Thus, we can use
Bayes’ Rule to assign the probability of occupancy and breeding to a new opening, as follows:
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For example, given a proposed location for a wildlife opening, say we find that there are 3 nearby
occupied openings. Given the likelihoods of an opening being in each use class given 3 nearby

joccupied openings Pr{3|C } = {0.088, 0.273, 0.159}and the overall fraction of openings in each

jclass Pr{C }= {0.34, 0.22, 0.44}, we can calculate the probability of the proposed opening being

1unoccupied (C ) as follows:

2The probability of the proposed opening being occupied but not for breeding Pr{C |3}= 0.38 and

3occupied for breeding Pr{C |3}= 0.44. Thus, we expect that proposed opening has a much higher
probability of being occupied for breeding than remaining unoccupied. Bayes’ Rule allows us to
quantify this guess. We could evaluate Bayes’ Rule for every potential wildlife opening and use the
results to prioritize those with the greatest chance for success.
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Example 2: Unknown priors – reproductive success in marbled salamanders

Let’s try a slightly more complex example in which we do not know the priors and we have a
continuous set of hypotheses. Here, we will focus on the mechanics of Bayesian estimation. In this
example, we have observed marbled salamander reproductive success in 13 vernal pools over a
period of seven years. We classified a pool as successful in a particular year if $1 juvenile
salamanders emerged from the pool per breeding female. Pond-years in which there was no
breeding effort were not included, thus the number of years in which we recorded success or failure
varied among pools for a total sample size of 61. Let’s say we are interested in determining the
probability of reproductive success among pools and we have prior knowledge about reproductive
success that we would like to incorporate into the analysis. Bayes’ Rule offers an elegant solution.

The first thing we need to do is specify a model for the data. For simplicity, we will assume a purely
stochastic model in which the number of successes is distributed binomially with parameters
p=constant probability of success and N=trial size per pool (number of years with reproductive
effort). To complete the Bayesian model we need to specify a prior distribution on the parameter p;
N is specified by the data. Since p is a proportion, it makes sense to use the beta distribution for the
prior on p; there are other reasons for using the beta but we will ignore them here.  

Given this model, we can use Bayes’ Rule to determine the posterior probability distribution; i.e., the
probability that p is any particular value given the data and the prior. 
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Next, we need to compute the likelihood of the data. We do this the same way we did before with
maximum likelihood estimation. Briefly, we start with a trial value for the parameter p, say 0.4 Then,
for each data point we compute its likelihood from the binomial probability mass function. For
example, the likelihood of the first point, given p = 0.4, is the probability of observing k = 5
successes from a binomial distribution with parameters p = 0.4 and N = 7 years with reproductive
effort, which equals 0.0774144. 
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We repeat this for each data point and take the product of the likelihoods (or the sum of the log-
likelihoods), which equals 6.662139e-11. This gives us the likelihood of the data given a single
hypothesized value of p. We need to repeat this process for other possible values of p – which is the
basis for the likelihood function. The likelihood function simply depicts how the likelihood changes
as we vary the value of p. The peak of this curve is the value of p that makes the data the most likely
and gives us the maximum likelihood estimate of the parameter. If we were Frequentists, we would
be done. However, as Bayesians we are interested in the posterior distribution, which we get by
combining the likelihood function with the prior probability distribution.
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Next, we need to compute the prior probability of each possible value of the parameter p. Here, we
have several options. We can choose informative priors in order to incorporate prior knowledge into
the analysis. Since the parameter of interest, p, is a proportion, a logical choice of probability
distributions is the beta, which varies between 0-1. The nice thing about the beta is that it can take
on a wide variety of shapes depending on the size and ratio of its two shape parameters, a and b. The
beta has other advantages as well in this case because it is the conjugate prior for the binomial which
makes it easy to do the math for Bayesian analysis. Let’s assume that we have prior data on the
topic. Specifically, let’s say that another researcher studying the same phenomenon observed a total
of 68 separate breeding efforts, of which 49 were successful and 19 were failures. We can specify
this as a relatively strong prior by using a beta with a - 1 successes (a =50) and b - 1 failures (b=20),
which has a mean probability of success (p) of 0.71 and a mode (peak) of 0.72. If, on the other hand,
our only prior knowledge came from a pilot study that we conducted in which we observed 4
successes and 1 failures, we can specify this as a relatively weak prior using a beta with beta with a -
1 successes (a =5) and b - 1 failures (b=2), which has a mean probability of success (p) of 0.71 and a
mode (peak) of 0.8.  Note here that our two informative priors have the same mean (expected) value
of p, but the strong prior is based on ten times as many data points as the weak prior. We should
probably have more confidence in the strong prior than the weak prior. It should take more
convincing in our new data to move away from the strong prior than the weak prior. Alternatively,
let’s assume that we have no prior knowledge. We can specify a “flat” prior using the beta by setting
a and b equal to 1. By doing so, the prior probability of p will be equal to 1 for every value of p
between 0-1.
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Next, to complete the full Bayesian analysis, we need to compute the probability of the data, the
denominator in the Bayes’ equation. This is necessary to make the posterior distribution a true
probability distribution – area equal to 1. However, it is only sometimes useful to be able to express
the posterior as a true probability – our first example on wildlife openings was such a case. More
often than not, however, we can ignore the denominator because our interest lies in finding the best
estimate of the parameter not in determining its absolute probability. For our purposes, we will
simply ignore the denominator. Calculating the denominator will not change the shape of the
posterior distribution at all; it will only change the scale of the y-axis. In simple models like the one
we are considering here, it is actually quite simple to calculate the denominator using either analytical
or numerical integration, but the procedures for doing this go beyond the scope of this chapter.
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The last step is to compute the posterior distribution by combining the likelihood and the prior.
Remember, the posterior is simply the prior distribution modified by the data as expressed through
the likelihood. Specifically, we simply multiply the likelihood distribution by the prior distribution to
get the unnormalized posterior distribution. The result shown here reveals how the prior distribution
is modified by the data under three different priors. If the prior is a strong one and differs from the
likelihood distribution, then the posterior distribution will be strongly influenced by the prior or,
conversely, the prior will be weakly influence by the data. On the other hand, if the prior differs
strongly from the likelihood, but is a weak one reflecting very little data (as is the case with our weak
prior, which is based on only 5 data points), then the posterior will largely reflect the likelihood. Of
course, if the prior is flat, and thus offers no information, the posterior will look exactly like the
likelihood. In our specific example, the Bayesian best estimate of the probability of success – which
is based on the mean of the posterior – is 0.63 in the case of the strong prior. In this case, the

prior priornumber of data points in the prior data set (N =68) is slightly more than in our data (N =61), so
the posterior is weighted more towards the mean of the prior (0.71) than the mean of the data
(0.54). In the case of our weak prior representing only 5 data points, the posterior mean of 0.56
largely reflects the mean of the data 0.54.
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Example: Let’s continue with the familiar brown creeper example. Here, we are proposing a linear
model for the deterministic component (i.e., a linear relationship between brown creeper abundance
and late-successional forest extent) and normally distributed errors for the stochastic component
(for simplicity). For now, let’s say that prior to our study we were ignorant of the relationship
between brown creepers and late-successional forest. As a result, we specify a flat beta prior
distribution for the slope and intercept, giving an equal probability to values between 0-1 for both
parameters (note, here we are constraining the slope to be positive, which is reasonable in this case
based on preliminary examination of the data), and a gamma prior distribution for 1/ó . The2

posterior for this model is partially given as follows:
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The likelihood is the same as before. The priors include distributions for the three model
parameters. And the denominator is now a triple integral since we have to integrate the numerator
over all three parameters. Believe it or not, an analytical solution is probably available for this
problem. Alternatively, we can use numerical methods to figure out the posterior distribution of
each parameter. Methods based on Markov Chain Monte Carlo (MCMC) procedures allow us to
estimate the posterior distribution by sampling from the posterior throughout the parameter space
and eliminate the need to solve the denominator of the Bayes’ equation. The details of how MCMC
algorithms work is beyond the scope of this chapter. The posterior distributions shown here were
obtained using such an approach. One thing to notice is that the Bayesian posterior point estimates
of the parameters are usually based on the mean of the posterior distribution, which is often not the
same as the peak or mode of the distribution – which is the basis for maximum likelihood methods.
Here, the Bayes’ estimates and MLE estimates vary slightly because the posterior distributions are
slightly skewed.
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Pros and cons of Bayesian estimation:

• Bayesian estimation is
(typically) a parametric
procedure; thus, it requires
that we make assumptions
about the stochastic
component of the model;
nonparametric Bayesian
procedures exits but are not
widely used as of yet.

• Like maximum likelihood
estimation, Bayesian analysis
also depends on the
Likelihood, which can be
constructed for virtually any
problem. 

• With lots of data the choice
of prior won’t matter much
and the parameter estimates
based on the posterior
distribution will resemble
parameter estimates based
on maximum likelihood.

• Regardless of how much
data we have, we can choose
to carry out an "objective"
Bayesian analysis by using
uninformative (vague, flat,
diffuse) priors so that the
priors have minimal impact
on determining the posterior
distribution and the parameter estimates will resemble those based on maximum likelihood.

• Bayesian estimation based on MCMC methods can be used to obtain parameter estimates for
distributions when it is far too complicated to obtain these estimates using ordinary frequentist
optimization methods; for example, when we are dealing with complex models with many
random effects, exotic probability distributions, too many parameters and too little replication.

• However, compared to maximum likelihood estimation conducting Bayesian estimation is
extremely complicated and requires considerable technical expertise, even for relatively simple
models. Thus, it remains to be seen whether Bayesian approaches will ever become mainstream
for ecologists.
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3. Credible intervals

Rarely are we interested in just point estimates of the parameters, which are generally useless without
measures of uncertainty. We really want to know the uncertainty associated with the parameter
estimates. Instead of drawing likelihood profiles for parameters, Bayesians draw the posterior
distribution (proportional to likelihood x prior). Instead of calculating confidence limits using the
(frequentist) Likelihood Ratio Test (LRT), they define the credible interval, which is the region in the
center of the posterior distribution containing 95% (or some other standard proportion) of the
probability of the distribution, bounded by values on either side that have the same probability (or

1 2 1 2probability density). Technically, the credible interval is the interval [x , x ] such that Pr(x ) = Pr(x )

1 2and C(x ) - C(x ) = 1 - á, where Pr() is the probability (density) and C is the cumulative density.
Note, the credible interval is slightly different from the frequentist confidence interval, which is

1 2 1 2defined as the interval [x , x ] such that C(x ) =  á/2 and C(x ) = 1- á/2. Note the difference
between a credible interval and a confidence interval. The credible interval is symmetrical in height;
the cutoff value on either end of the distribution has the same posterior probability (density). The
confidence interval is symmetrical in area; the likelihood of more extreme values in either direction
is the same. The credible interval’s height symmetry leads to a uniform probability cutoff; we never
include a less probable value on one boundary than on the other. The confidence interval’s area
symmetry leads to a potentially uneven probability cutoff, so long as the cumulative probability of a
more extreme value (i.e., area of the tail) is the same. To a Bayesian, holding the probability the same
on both boundaries makes more sense than insisting (as the Frequentists do in defining confidence
intervals) that the cumulative probabilities of more extreme values in either direction are the same.

Example: Continuing with the salamander reproductive success example, the Bayesian 95% credible
interval for the parameter p (the probability of reproductive success) is 0.416-0.663.
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For multiparameter models, the likelihood surface is analogous to a bivariate or multivariate
probability distribution, which for two dimensions (parameters) can be depicted as a posterior
probability surface. The marginal probability density is the Bayesian analogue of the likelihood profile.
Where Frequentists use likelihood profiles to make inferences about a single parameter while taking
the effects of the other parameters into account, Bayesians use the marginal posterior probability
(density), the overall probability for a particular value of a focal parameter integrated over all the
other parameters.

Example: Continuing with the brown creeper example, the posterior probabilities for the two key

1 0parameters, the slope b  and intercept b  are plotted here on a posterior probability surface. The
marginal probability distributions depict the probability density for each parameter integrated over

1all other parameters. Thus, the marginal distribution for b  is simply the probability density evaluated

1over varying values of  b . On the two-parameter posterior probability surface shown here, this is
equivalent to finding the area under the surface along a horizontal belt transect and expressing this
as a proportion of the area under the entire surface. In practice this entails taking a horizontal slice

1of the surface for each value of b  (i.e., summing the values of the posterior surface along the
horizontal transect) and dividing it by the area under the entire surface.
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4. Model comparison

Bayesians generally have no interest in hypothesis testing (although it can be done in the Bayesian
framework) and little interest in formal methods of model selection. Dropping a variable from a
model is often equivalent to testing a null hypothesis that the parameter is exactly zero, and
Bayesians consider such point null hypotheses silly. They would describe a parameter’s distribution as
being concentrated near zero rather than saying its value is exactly zero. Nevertheless, Bayesians do
compute the relative probability of different models, in a way that implicitly recognizes the bias-
variance trade-off and penalizes more complex models. Bayesians prefer to make inferences based
on averages rather than on the most likely values; for example, they generally use the posterior mean
values of parameters rather than the posterior mode. This preference extends to model selection.
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The marginal likelihood of a model is the probability of observing the data (likelihood), averaged over
the prior distribution of the parameters:

where ö represents a parameter or set of parameters (if a set, then the integral would be a multiple
integral). The marginal likelihood (the average probability of observing a particular data set exactly)
is often very small, and we are really interested in the relative probability of different models. The
Bayes factor is the ratio of two marginal likelihoods, or the odds in favor of model 1 (numerator
model), generally assuming equal prior probabilities for both models:

In principle, using Bayes factors to select the better of two models is simple. If we compare twice
the logarithm of the Bayes factors (thus putting them on the deviance scale), the generally accepted
rules of thumb for Bayes factors are similar to those for AIC, where 0-2 is weak evidence in favor of
model 1, 2-6 is positive evidence in favor of model 1, 6-10 strong evidence in favor of model 1, and
>10 very strong evidence in favor of model 1.



Bayesian inference         31

If we want to compare several different (not necessarily) nested models, we can look at the pairwise
Bayes factors or compute a set of posterior probabilities for the set of models – assuming that all of
the models have the same prior probability – by computing the relative values of the marginal
likelihoods:

Bayes factors and marginal likelihoods incorporate an implicit penalty for overparameterization.
When you add more parameters to a model, it can fit better – the maximum likelihood and the
maximum posterior probability increase – but at the same time the posterior probability distribution
spreads out to cover more less-well-fitting possibilities. Since marginal likelihoods express the mean
and not the maximum posterior probability, they will actually decrease when the model becomes too
complex. Unfortunately, computing the marginal likelihood for a particular model can be tricky,
involving either complicated multidimensional integrals or some kind of stochastic sampling from
the prior distribution. There are approximation methods however, but we will not describe them
here. A simpler alternative to the Bayes factor and marginal likelihoods is the Schwarz information
criterion (or Bayes Information Criterion, BIC), which approximates the log of the Bayes factor and
is easy to calculate:
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where n is the number of observations and m is the number of parameters. When n is greater than e2

. 8 observations (so that log n > 2), the BIC is more conservative than the AIC, insisting on a
greater improvement in fit before it will accept a more complex model. Note, while the BIC is
derived from a Bayesian argument, it is not inherently a Bayesian technique. Nevertheless, it is
commonly used and reported as such.

A more recent criterion is the DIC, or deviance information criterion, which is similar in concept to 
AIC – penalized goodness-of-fit – only the goodness-of-fit metric is based on deviance instead of
the negative log-likelihood:

Dwhere D hat is the deviance calculated at the posterior mean parameters and p  is an estimate of the
effective number of parameters.
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The information criteria such as BIC and DIC are useful for comparing multiple models all at once
and are not suitable for hypotheses testing – which is in line with Bayesian philosophy. Like all
information criteria, e.g., AIC, BIC and DIC have a general rule of thumb for their interpretation.
Differences <5 are considered equivalent, 5-10 distinguishable, and >10 definitely different. Thus,
they provide a quick and useful way to compare the weight of evidence in favor of alternative
models. Indeed, model weights can be calculated from the IC values which give the relative
likelihood or probability of a model given the data.
 
Unfortunately, delving into these measures further is beyond the scope of this chapter and beyond
my complete understanding. Suffice it to say that there are several methods for comparing models in
a Bayesian framework, but the tradeoffs among approaches is still being hotly debated.

Example: Continuing with the brown creeper example, recall the three alternative models we
considered in the maximum likelihood setting. Recall that based on AIC, model 3 was selected as
the “best” model based, with model 1 and 2 close behind. BIC gives model 1 the most weight with
model 3 and 2 close behind. DIC gives a similar ranking. Not surprisingly, both BIC and DIC were
more conservative than AIC and chose model 1 over the more complex model 3. 
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5. Predictions

The final goal of statistical inference is to make predictions. In many cases, once we confirm that
our model is a good one, say by confirming that it is significantly better than the null model (e.g., of 
no relationship between x and y) or that it is the best among competing models considered, we
might want to use this model to predict values for future observations or for sites not sampled. 

Unfortunately, I know next to nothing about model predictions in a Bayesian framework. Prediction
is certainly doable in the Bayesian framework, but the methods are not familiar to me. So we will
skip this topic, but recognize that prediction is possible in a Bayesian framework.
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6. Pros and cons of Bayesian likelihood inference

The frequentist Bayesian inference framework is hugely appealing in many respects but it is not
without some serious drawbacks. We already touched base on many of the pros and cons of
Bayesian inference in the section on estimation. Here we will finish with a few additional
overarching thoughts.

1. Philosophy... Bayesian inference is as much a philosophy as a method. Its distinctiveness arises as
much from its philosophical underpinnings as the uniqueness of the methods themselves.

2. Technical challenges... Despite the many conceptual advantages of Bayesian statistics, the methods
for estimation are largely still too complex and technically challenging for mainstream ecology. It
remains to be seen whether enough progress is made in facilitating Bayesian analysis to make it
accessible to vast major of ecologists. Until then, Baysian statistics will likely remain out of reach
for most individuals not willing or able to delve into the gory details of Bayesian anlaytical
methods. 

3. Modern statistical inference... Without question Bayesian statistics is the current buzz in ecological
modeling and gaining rapidly in popularity over maximum likelihood. However, for the reasons
mentioned above it remains to be seen whether it will end up being a temporary fad or persist. 


	 1. Bayesian parametric inference
	2. Parameter estimation the Bayesian way
	3. Credible intervals
	4. Model comparison
	5. Predictions
	6. Pros and cons of Bayesian likelihood inference

