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1. Frequentist parametric inference based on maximum likelihood

The method of ordinary least squares can be used to find the best fit of a model to the data under
minimal assumptions about the sources of uncertainty. Furthermore, goodness-of-fit profiles,
bootstrap resampling of the data set, Monte Carlo randomization procedures allows us to make
additional inferences. All of this can be done without assumptions about how uncertainty enters into
the system. However, there are many cases in which the form of the probability distributions of the
uncertain terms can be justified. For example, if the deviations of the data from the average very
closely follow a normal distribution, then it makes sense to assume that the sources of uncertainty
are normally distributed. In such cases, we can go beyond the least squares approach and use
frequentist parametric inference methods based on maximum likelihood, which we discuss in this
chapter. The likelihood methods discussed here allow us to calculate confidence bounds on
parameters directly without resampling the original data set, and to test hypotheses in the traditional
manner (i.e., without resorting to Monte Carlo randomization procedures). In addition, likelihood
forms the foundation for Bayesian analysis, which we discuss in the next chapter.
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2. The parametric statistical model

Given a question, the first step in model-based inference is to propose a statistical model that we
wish to confront the data with. In a parametric approach, we need to specify both the deterministic
component and the error component, although in some simple cases we may only need to specify
the error. 

Example: Let’s continue with the familiar brown creeper example. Here, we are proposing a linear
model for the deterministic component (i.e., a linear relationship between brown creeper abundance
and late-successional forest extent) and normally distributed errors for the stochastic component
(for simplicity).
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3. Parameter estimation: maximum likelihood

The next step is to fit the model; i.e., estimate the model parameters. What we need is an objective
method of computing parameter estimates from the data that are in some sense the ‘best’ estimates
of the parameters for these data and this particular model. In this frequentist parametric inference
framework, we call the “best” estimates the maximum likelihood estimates of the parameters because
they are the parameter values that make the observed data the most likely to have happened. To find
the maximum likelihood estimates, we need to define an objective measure of fit that we can
maximize (or a measure of ‘lack of fit’ that we can minimize). Our new measure of fit is called the
Likelihood and it works as follows.

Likelihood:

For any of the known probability distributions (see earlier chapter), the probability of observing data

iY , given a (possibly vector-valued) parameter value ö, is:

iThe subscript on Y  indicates that there are many possible outcomes (for example, i = 1, 2, ... I), but

ionly one value of the parameter ö. For example, suppose that Y  follows a normal distribution with

ithe parameters mean = ì and standard deviation = ó. Then for any observation we predict that Y  =
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iy  with probability:

Note, the right side of the equation is just the formula for the probability density function (pdf) for
the normal distribution. Recall that the pdf gives the probability of any particular outcome given
values of the parameter(s). We can also express this as the probability of the ‘data’ (treated as

i irandom) given the ‘hypothesis’ (treated as fixed), where the ‘data’ is a single observation of Y  (= y )
and the ‘hypothesis’ is that the mean = ì and standard deviation = ó.

However, when confronting models with data, we usually want to know how well the data support
the alternative hypotheses, where hypotheses represent different values of the parameters. That is,
after data collection, the data are known (fixed) but the hypotheses (parameter values) are still
unknown. We ask, “given these data, how likely are the possible hypotheses (parameter values)?” To
do this, we introduce a new symbol to denote the “likelihood” of the data given the hypothesis:

Note the subtle but important shift between equations: Y has no subscript here because there is only

ione observation (the observed value of Y ), but now the parameter is subscripted because there are
alternative parameter values (hypotheses); for example, we might have m = 1, 2, ..., M.
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The key to the distinction between likelihood and probability is that with probability the hypothesis
(parameter value) is known and the data are unknown, whereas with likelihood the data are known
and the hypotheses unknown. In general, we assume that the likelihood of the data, given the
hypothesis, is proportional to the probability of the data, given the hypothesis, so the likelihood of

mparameter ö  given the data Y, is: 

Also, in general, we are concerned with relative likelihoods because we mostly want to know how
much more likely one set of hypotheses is relative to another set of hypotheses. In such a case, the
value of the constant c is irrelevant and we set c = 1. Then the likelihood of the data, given the
hypothesis, is equivalent to the probability of the data, given the hypothesis:

Note that since likelihood is not equal to probability, but as far as we are concerned it is equivalent
to probability, we replace the equal sign with the symbol for equivalence – three bars instead of two.
Also note that although it must be true that if the parameter ö is fixed:
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when the data Y are fixed, the sum over the possible parameter values

need not be finite, let alone equal to 1. Thus, likelihood is not equal to probability. Nevertheless, it
may be helpful to think of likelihood as a kind of unnormalized probability.

The likelihood function:

mBy plotting the likelihood (L) as a function of ö  – the likelihood function – we can get a sense of
the range of parameter values for which the observations are probable. When looking at the
likelihood function, remember that the comparisons are within a particular value of the data and not
between different values of the data. The likelihood function depicts the likelihood of the data given
alternative values of the parameter(s). The value of the parameter(s) that gives the maximum
likelihood is the “best” estimate of the parameter – because it makes the data the most likely
outcome.
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iThe likelihood as given above is for a single observation Y=y . However, we usually have multiple

1 2 nobservations in a data set, Y = y , y , ..., y . Since likelihoods are determined from probabilities, the
likelihood of a set of independent observations is the product of the likelihoods of the individual
observations:

We can visualize this graphically by creating a separate likelihood curve for each observation, where

iwe plug in the single value of Y=y  and evaluate the likelihood function across the range of possible

1parameter values. Thus, in the figure above, the top likelihood curve shows the curve for y =8.

1Note, when y =8 the likelihood is greatest when the mean is also 8, which makes sense because with
the normal distribution the mean will always be the most likely value. The middle likelihood curve

1shows the curve for y =10, and note that it is highest when the mean is 10. Similarly, the bottom

1likelihood curve shows the curve for y =12, and again it is highest when the mean is 12.

Now, when we want to determine the likelihood for the entire dataset, we simply evaluate each of
the curves for a fixed value of mu to compute the individual likelihoods, and then multiply the
results to get the joint likelihood of the entire dataset. So for a mu of say 4, we compute the
likelihoods for each of the observations (shown by the red dots with the vertical line intersects the
likelihood curves) and take the product. We do the same for each possible value of mu and plot the
overall result as our likelihood curve for the entire dataset.
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Because likelihoods may be very small numbers, the product of the likelihoods can get very small
very fast and can exceed the precision of the computer. Because we only care about the relative
likelihood, the convention is to work with the log-likelihoods instead, because the log of a product is
equal to the sum of the logs. Therefore, we can take of the logarithm of each individual likelihood
and add them together and get the same end result, i.e., the parameter value that maximizes the
likelihood (L) is equal to the parameter value that maximizes the log-likelihood (L):

In addition, in analogy to ordinary least squares, we use the negative of the log-likelihood so that the
most likely value of the parameter is the one that makes the negative log-likelihood as small as
possible. In other words, the maximum likelihood estimate is equal to the minimum negative log-
likelihood estimate. Thus, like sums of squares, negative log-likelihood is really a “badness”-of-fit
criterion. Even though in practice we almost always find the minimum negative log-likelihood
estimates, we usually still refer to the estimates as the maximum likelihood estimates – since they are
equivalent anyways.
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Maximum likelhood estimation:

Given our goodness(or badness)-of-fit measure, our next step is to find the values of the parameters
that give us the best fit – the so-called maximum likelihood estimators. By convention, we usually
minimize the negative log-likelihood function, but the solution is the same if we were to maximize
the likelihood or log-likelihood functions. Note, the figures shown here, the y-axis changes but the
optimum value of the parameter (x-axis) does not.
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Example: Let’s see how maximum likelihood estimation works for our linear model example. First,
we have to create the appropriate likelihood function for our model. In this case, given our choice
of normal errors, the likelihood of each observation is based on the probability density function for
the normal distribution. However, because we are assuming a linear relationship between x (%late-
successional forest) and y (brown creeper abundance), we replace the mean in the normal equation

0 1with the linear model b  + b x.  The likelihood of the entire data set is simply the product of the
likelihoods of each observation, assuming that they are independent observations – which we will
assume here. The negative log-likelihood of the data set is negative of the sum of the log-likelihoods
of each observation, which can be simplified further as shown.

The best estimates of our model parameters are those that minimize our measure of lack of fit
(NLL). Like with ordinary least squares, the solution can be found either numerically or analytically.
In this case, given our simple model and choice of normal errors, an analytical solution exists.
However, in more complex models or models with non-normal errors, a numerical solution is

0 1needed. Note that in our case, the solution is found by finding values of b  and b  that minimize the
sums of squared residuals, which is the same solution found through ordinary least squares.
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1Let’s take the first observation y , and calculate the likelihood given a trial set of values for the model
parameters. Note, the likelihood can be obtained by plugging in the right numbers for this
observation into the likelihood function. Graphically, this is equivalent to reading off the probability
density for the observed value of y (0.03) given a normal pdf with a mean equal to the predicted
value of y obtained from the linear equation and a standard deviation equal to the trial value for this
parameter. Note, the x-axis of the pdf is cut-off at 0 here since we can never observe a value of
brown creeper abundance less than 0; however, in reality the normal pdf extends to the left into
negative territory. The likelihood for the first observation is 2.877. The log-likelihood log(2.877) is
1.057 and the negative log-likelihood is -1.057. We repeat this process for the second observation
and get a negative log-likelihood of -0.952. If we repeat this process for each observation and sum
the results, we get a negative log-likelihood for the data set of 1.33066. Is this a good fit or bad fit?
We cannot say in absolute terms since likelihood (and negative log-likelihood) does not have a
probabilistic interpretation. We can only say by comparison to other fits of the model.



Maximum likelihood inference         13

Let’s try another set of values for the parameters and recalculate the negative likelihood of the data
set. Here we increased the value of the intercept and slope parameters, but held the standard
deviation the same, and we got a much smaller negative log-likelihood. Remember, smaller negative
log-likelihood means a better fit, so we did much better with these new parameter estimates.
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Numerical optimization essentially involves trying new values for the parameters until we find values
that minimize the negative log-likelihood of the data set. This essentially involves shifting the fit of
the linear model around until the “best” fit is found. Best in this case is defined by the values that
minimize the negative log-likelihood of the data, but this can be shown to be equivalent to
minimizing the sums of squared residuals since the errors are assumed to be normally distributed.

0 1If we allow b  to vary between -0.05-0.25 and b  to vary between 0.0035-0.0085, and then for each
combination of values recalculate the negative log-likelihood, we can plot the results as a goodness
(or badness)-of-fit surface. The surface depicts the value of NLL for every combination of
parameter values evaluated. The lowest point on this surface represents the combination of
parameter values that minimizes NLL, our badness-of-fit metric. The contours are not close enough
near the bottom of the surface to estimate precisely where the minimum is, but the computer tells us

0 1that they are b =0.099 and b =0.0058. 



Maximum likelihood inference         15

Pros and cons of maximum likelihood estimation:

• Maximum likelihood estimation is a parameter procedure; thus, it requires that we make
assumptions about the stochastic component of the model.

• The good news is that maximum likelihood solutions can be found for just about any parametric
model – it’s not restricted to normally distributed errors – assuming that the negative log-
likelihood function can be derived, which gets increasingly difficult with increasingly complex
problems. However, at least theoretically, a negative log-likelihood function can be specified for
any problem.

• If the errors are normally distributed, then the maximum likelihood estimates and ordinary least
squares estimates are virtually identical. There may be differences in some estimates but these are
usually trivial, especially if sample sizes are large.

• Maximum likelihood estimation is the basis for most modern ecological modeling – along with
Bayesian estimation, so it behooves us to become very familiar with the approach. 
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4. Confidence intervals

Thus far, we have used maximum likelihood estimate to get point estimates, but these are generally
useless without measures of uncertainty. We really want to know the uncertainty associated with the
parameter estimates.

Likelihood curves and surfaces:

The most basic tool for understanding how likelihood depends on one or more parameters is the
likelihood curve or likelihood surface, which is just the likelihood (usually the negative log-
likelihood) plotted as a function of parameter values. The likelihood curve is plotted for a single
parameter, whereas the likelihood surface shows the likelihood as a function of two parameters. Each
point on the curve or surface corresponds to a goodness(badness)-of-fit to the data, and the shape
of the curve or surface reflects the precision of our estimates. Intuitively, it makes sense that if the
value of the likelihood degrades rapidly as we move away from the point estimate (the minimum
negative log-likelihood), then we should probably have high confidence in our point estimate and
the corresponding confidence interval should be small. On the other hand, if the curve or surface
degrades slowly, then it means that we should have lower confidence in our point estimate.
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Likelihood profiles:

If we want to deal with models with more than two parameters, or if we want to analyze a single
parameter at a time, we have to find a way to isolate the effects of one or more parameters while still
accounting for the rest. The preferred way to do this is calculate likelihood profiles, which represent
“ridgelines” in parameter space showing the minimum negative log-likelihood for particular values
of a single parameter. To calculate a likelihood profile for a focal parameter, we have to set the focal
parameter in turn to a range of values, and for each value optimize the likelihood with respect to all
of the other parameters. 

1 0In the brown creeper example shown here, the likelihood profile for the slope b  and intercept b  are

1 0 1plotted on the likelihood surface for b  and b . For example, the likelihood profile for b  was
obtained by systematically varying its value between 0.0035-0.0085 and for each value finding the

0value of the other parameters b  and ó that minimized the negative log-likelihood. On the two-
parameter likelihood surface shown here, this is equivalent to finding where a horizontal transect

1across the surface at each value of b  intercepted the minimum negative log-likelihood, which is at
the point at which the horizontal transect is tangent to a contour line (i.e., the point at which the

0contour line is perfectly horizontal). This is the corresponding value of b  that optimized the
negative log-likelihood.
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It is perhaps easiest to visualize the likelihood profile as a one-dimensional curve in which the
minimum negative log-likelihood across all other parameters is plotted against fixed values of the

1 0focal parameter. The profiles shown here depict how the degradation in the model fit as b  and b
vary systematically over a reasonable range of values. The maximum likelihood estimate is the point
where the negative log-likelihood curve is minimum and the shape of the curves depict how much
confidence we should have in each of the estimates.
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On a negative log-likelhood curve or surface, the steeper and narrower the valley (i.e., the faster the
fit degrades as we move away from the best fit), the more precisely we can estimate parameters.
Thus, the likelihood profile contains information that we can use to create confidence intervals for
our parameters. In addition, since the negative log-likelihood for a set of independent observations
is the sum of the individual negative log-likelihoods, adding more data makes the likelihood curves
steeper, which means that our confidence in the estimates gets greater – which makes sense.

It makes sense to determine confidence limits by setting some upper limit on the negative log-
likelihood and declaring that any parameters that fit the data at least that well are within the
confidence limits. The steeper the likelihood surface, the faster we reach the limit and the narrower
are the confidence limits. Since we care only about the relative fit of different models and
parameters, the limits should be relative to the minimum negative log-likelihood. A common rule of
thumb is to include parameter values within 2 negative log-likelihood units of the minimum, which
corresponds to all fits that gave likelihoods within a factor of e . 7.4 of the maximum. As shown, a2 

univariate confidence region based on the minimum plus 2 rule is plotted on the likelihood surface

1 0 for b  and b . However, this approach lacks a frequentist probability interpretation – there is no
corresponding p-value. This deficiency may actually be an advantage, since it makes dogmatic null-
hypothesis testing impossible.
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Likelihood Ratio Test:

If we want confidence intervals with a p-value interpretation, we can use the differences in log-
likelihoods (corresponding to ratios of likelihoods) in a frequentist approach called the Likelihood
Ratio Test (LRT). Take some likelihood function and find the overall best (maximum likelihood)
value:

Now fix one (or more) of the parameters, say ö*, and maximize with respect to the remaining
parameters, and called this the maximum likelihood of the restricted (or reduced or nested) model:

The likelihood ratio test says that twice the negative log of the likelihood ratio, called the deviance, is
approximately ÷  (“chi-squared”) distributed with r (difference in # parameters between full and2

reduced models; 1 in this case) degrees of freedom. This is equivalent to twice the difference in the
negative log-likelihoods between the restricted and original model:
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The definition of the likelihood ratio test echoes the definition of the likelihood profile, where we
fix one parameter and minimize the negative log-likelihood with respect to all the other parameters:
r = 1 in the definition above. Thus, for univariate confidence limits we cut off the likelihood profile
at: 

where á is our chosen type I error level (e.g., 0.05 for a 95% confidence interval). The cutoff is a
one-tailed test, since we are interested only in differences in likelihood that are larger than expected
under the null hypothesis. Note, the degrees of freedom r is one for a univariate confidence interval
since we are fixing only one parameter. The 95  quantile of ÷  distribution with 1 degree of freedomth 2

equals 3.84, divided by 2 equals 1.92. Consequently, the univariate confidence interval is almost
identical to the “rule-of-thumb” confidence interval of plus 2 negative log-likelihood units from the
minimum. 
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What if we want to establish confidence limits on two parameters simultaneously? We need bivariate
confidence limits instead of univariate confidence limits. For bivariate confidence limits we cut off
the likelihood profile at:

which looks just like the univariate confidence limit except that now instead of 1 degree of freedom
we have 2. The 95  quantile of ÷  distribution with 2 degrees of freedom equals 5.99, divided by 2th 2

equals roughly 3.00. Not surprisingly, the bivariate confidence region is larger than the univariate
confidence region since we need to account for the uncertainty in two parameters instead of one. In
the figure shown here, the bivariate confidence region is depicted on the negative log-likelihood

1 0 surface for b  and b  along with the smaller univariate confidence region, although the later is not
really appropriate for this figure, because it applies to a single parameter at a time, but it illustrates
that univariate confidence intervals are smaller than the bivariate confidence regions.
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5. Hypothesis testing

Now that we have fit the model; i.e., we found the maximum likelihood estimates of the parameters
that make the data the most likely, the next step in a classical frequentist framework is to test
whether the model is statistically significant. In a likelihood framework, hypothesis testing is really
just a comparison of the likelihood (or negative log-likelihood) of two models which differ in one or
more parameters. With adherence to the goal of parsimony (also called “Occam’s razor”), we
generally want to chose the simplest model that can explain the data even though we know the
world is more complex. Hypothesis testing, and model selection in general, approaches typically go
beyond parsimony to say that a more complex model must be not just better than, but a specified
amount better than, a simpler model before we will accept it over the simpler model. If the more
complex model doesn’t exceed a threshold of improvement in fit, we typically reject it in favor of
the simpler model. Model complexity also affects our predictive ability. The more complex we make
a model, the better we are able to explain the data in hand. However, when we attempt to make
predictions with the model, we may fail to make accurate predictions. This can happen because the
model is so fine-tuned to the data set in hand that it is no longer useful for anything but explaining
the data in hand. We call this phenomenon “overfitting”, because the model is so overfit to the data
that it loses its predictive ability. So how can we tell when we are overfitting real data?
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We can use the Likelihood Ratio Test (LRT), which we used before to find confidence intervals and
regions, to choose models in certain cases. A simpler model (with fewer parameters) is nested in
another, more complex model (with more parameters) if the complex model reduces tot he simpler
model by setting some parameters to particular values (often zero). For example, a constant model, y

0 0 1 1= b , is nested in the linear model, y = b  + b x, because setting b  = 0 makes the linear model
constant. The LRT provides a significance test for nested models. Recall that twice the negative log
of the likelihood ratio of the nested models, deviance, is approximately ÷  distributed with r degrees2

1of freedom. In our linear model example, we can test the null hypothesis that b  = 0, which is
equivalent to testing whether the linear model is significantly better than the constant (intercept
only) model. Twice the difference between the negative log-likelihood of the constant model and the
negative log-likelihood of the linear model, or deviance, is equal to 28.73, which is distributed ÷2

with 1 degree of freedom (since the difference in number of parameters is 1). A deviance this large
or larger would be expected almost never (p<0.0001) under the null model; i.e., if the constant
model were true. So we can reject the null hypothesis in favor of the linear model as being a
significantly better fit.
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6. Model comparison

The LRT hypothesis test that we just described involves testing the significance of a parameter by
framing it as a comparison of two nested models, where the model without the parameter (reduced)
is compared to the model with the parameter (full). However, this is just a special case of comparing
two alternative or competing models that differ in parameters. Often we have multiple alternative or
competing models that we want to consider. We expect a model with more parameters to fit better
in the sense that the negative log-likelihood should be smaller if we add more terms to the model.
But we also expect that adding more parameters to a model leads to increasing difficulty of
interpretation. So how do we compare a model with m parameters to a model with p parameters?

Let’s say that we wish to consider three competing models of increasing complexity: 
Model 1: BRCR = ls
Model 2: BRCR = ls + p.contag
Model 3: BRCR = ls + p.contag + s.sidi 

Because these models are nested in terms of the explanatory variables (i.e., model 1 is nested with
model 2, which is nested within model 3), we can use the LRT to compare pairs of increasingly
complex models. The results shown here indicate that model 2 is not a significant improvement over
model 1 (p=.304) and that we should therefore accept the simpler model 1 over the more complex
model 2. However, model 3 is a significant improvement over model 2 (p=0.030), but only mildly
significantly better than model 1 (p=0.056).
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Information criteria:

The LRT approach can work well when all of the models are nested, but even so involves a series of
pairwise comparisons which can make interpreting the results more complex. One way to avoid a
plethora of pairwise model comparisons is to select models based on information criteria, which
compare all candidate models at once and do not require nested alternatives. These relatively recent
alternatives to LRT are based on the expected distance (quantified in a way that comes from
information theory) between a particular model and the “true” model. In practice, all information-
theoretic methods reduce to finding the model that minimizes some criterion that is the sum of a
term based on the likelihood (usually twice the negative log-likelihood) and a penalty term which is
different for different information criteria.   

The Akaike Information Criterion, or AIC, is the most widespread information criterion and is defined
as:

where m is equal to the number of model parameters. As with all information criteria, small values
represent better overall fits; adding a parameter with a negligible improvement in fit penalizes the
AIC by 2 log-likelihood units, which is similar to the significance threshold for the LRT test with 1
degree of freedom. For small sample sizes (n), such as when n/m < 40, there is a finite-size
correction to AIC:
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There are other information criteria besides AIC, but they all work on the same principle.
Importantly, information criteria do not allow frequentist significance tests based on the estimated
probability of getting more extreme results in repeated experiments. Some would claim this is an
advantage. With information criteria, we cannot say that there is a significant difference between
models; a model with a lower AIC for example is better, but there is no p-value associated with how
much better it is. Instead, there are some commonly used rules of thumb: models with information
units less than 2 apart, delta AIC for example, are more or less equivalent; those with 4-7
information units difference are clearly distinguishable; and models with >10 information units
difference are definitely different. The model with the lowest information units is the “best” model,
but those with differences of <10 are worth considering. One way to approach this situation is with
AIC weights, which give the relative likelihood of a model. Model weights are based on the delta
AIC values and are often interpreted as giving the “probability” of the model given the data – which
is a Bayesian like interpretation of the support for a particular model, although weights are not true
probabilities and should not be confused with Bayesian posterior probabilities (discussed in the next
chapter).

In the example shown here, model 3 is selected as the “best” model based on AIC corrected for
small sample size, but model 1 and model 2 are both nearly as good since they are within 2 AIC
units of the best model. Model weights indicate that there is almost as much weight of evidence in
favor of either model 3 as model 1, but that model 2 has much less support.
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7. Predictions

The final goal of statistical inference is to make predictions. In many cases, once we confirm that
our model is a good one, say by confirming that it is significantly better than the null model (e.g., of 
no relationship between x and y) or that it is the best among competing models considered, we
might want to use this model to predict values for future observations or for sites not sampled. 

Point estimates for predictions are relatively straightforward, simply plug in the new values for the
independent (predictor) variables into the fitted model equation for the deterministic component to
get the expected values. Interval estimates for our predictions are more difficult and there are many
nuanced approaches for deriving them for different situations. However, one relatively
straightforward approach is to simply use the fitted statistical model to simulate new values and then
construct quantile intervals from the predicted values (as shown in the figure here). If we are willing
to assume that the errors are independent and identically normally distributed, then we can construct
a prediction interval as described previously in the chapter on nonparametric inference based on
ordinary least squares.
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8. Pros and cons of maximum likelihood inference

The frequentist parametric inference framework based on maximum likelihood methods is powerful
but not without some drawbacks. 

1. Parametric method... It is a parametric approach and therefore it requires assumptions about the
error distribution. 

2. Stronger statistical inference... As a consequence of number one above, in general the inferences
from a parametric procedure are stronger than from a nonparametric procedure. This is because
the parametric statistical model is a complete description of the underlying population, and we
can conceive of the model as a data-generating mechanism for the population.

3. Likelihood specification...One of the biggest challenges confronting users of maximum likelihood
methods is the specification of the likelihood function, or negative log-likelihood function, for
complex models. With simple models this is usually not a problem, as there are built in functions
in R for simple and even moderately complex models. However, as models increase in
complexity, it becomes the responsibility of the user to write the likelihood function and this can
be extremely challenging for most ecologists, even those with a good background in statistics. 

4. Modern statistical inference... Maximum likelihood is the basis for much of modern statistical
inference in ecology, although the Bayesian framework is rapidly gaining in popularity.
Nevertheless, the likelihood function is used in both maximum likelihood and Bayesian
methods, so it behooves us to master our understanding of likelihood-based methods.
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