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1. Nonparametric inference

In the previous chapters we introduced all the ingredients needed to define a statistical model –
mathematical functions to describe the deterministic patterns and probability distributions to
describe the stochastic patterns – and described how to use these ingredients to simulate simple
environmental systems. The final steps of the modeling process are estimating parameters from data,
optionally testing null hypotheses (i.e., do the parameter estimates differ significantly from pre-
specified values), comparing alternative models, and making predictions for observations not yet
collected – the stuff of statistical inference. In this chapter, we will describe methods for inference in
a nonparametric framework; i.e., when it is not possible to specify a known probability distribution
for the stochastic component of the model. Since nonparametric methods don’t assume any
particular underlying distribution, they do not involve making an explicit link to the underlying
population from which the sample was drawn. Instead, they base all inferences on the sample itself.
Consequently, some refer to nonparametric methods such as ordinary least squares as a
“noninference” framework, since technically one is not able to infer characteristics of the population
without making an assumption that the sample was drawn from a particular population.
Nevertheless, it is perhaps more useful to think of nonparameteric approaches such as ordinary least
squares as an inference framework, but one with only weak inferential power compared to
parametric methods.
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2. The (nonparametric) statistical model

Given the question, the first step in model-based inference is to propose a statistical model that we
wish to confront the data with. In a nonparametric approach we need only to specify the
deterministic component, since the error component does not need formal specification. Note, this
does not mean that model contains no error, only that its distribution is not specified in the model.

Example: Let’s begin with a now familiar question: do brown creepers increase in relative abundance
with increasing extent of late-successional forest in the Oregon Coast Range? The data represent the
relative abundance of brown creepers (# per unit area per unit effort) across 30 subbasins in the
Oregon Coast Range which vary in their composition of late-successional forest. Given this
question, a logical deterministic model would be a linear relationship between brown creeper
abundance and late-successional forest extent, since this is the simplest (i.e., most parsimonious) and
yet meaningful model that we can propose. A nonlinear model might also be appropriate, but we
would need more information a priori to propose the form of such a relationship. Note, we could
do some exploratory data analysis with the data in hand to see if a nonlinear relationship is apparent
and then select an appropriate mathematical function based on the patterns observed – a
phenomenological approach, but let’s avoid doing so to avoid possible criticism for data-dredging. 
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3. Parameter estimation: Ordinary Least Squares

The next step is to fit the model; i.e., estimate the model parameters. What we need is an objective
method of computing parameter estimates from the data that are in some sense the ‘best’ estimates
of the parameters for these data and this particular model. First, we need to define an objective
measure of fit that we can maximize (or a measure of ‘lack of fit’ that we can minimize) in order to
find the parameters that fit the data the best. The method of Ordinary Least Squares (or sums of
squares) finds the parameters ö that minimize the sum of the squared residuals (hence the name
“least squares” or “ordinary least squares”), where the ‘residuals’ are defined as the vertical
differences between the data (points in scatterplot) and the fitted model (line in scatterplot). 

iExample: Let’s see how this works for our linear model example. Each residual is a distance, d ,

i ibetween a data point, y , and the value predicted by the fitted model, ŷ , evaluated at the appropriate

ivalue of the explanatory variable, x :

iNow, we replace the predicted value ŷ  by its formula, noting the change in sign:
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Finally, our measure of lack of fit is the sum of the squares of these distances:

i 0 1 i 0 1where L(Y |b , b ) refers to the likelihood of the data Y  given values of the parameters b  and b ,
where the likelihood is defined here as the sums of squared deviations.
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The best estimates of our model parameters are those that minimize our measure of lack of fit (L).
So how do we find the parameters that minimize L? We can think of OLS as working as follows.
The best fit line is defined as passing through the point defined by the mean value of x (xG) and the
mean value of y (Gy) – the centroid of the data. Imagine that the straight line through this point is
pivoted until the sum of squared residuals L is minimum. This solution can be achieved numerically
by trying lots of values of the parameters and choosing the set that minimizes the objective function.
If we compute the lack of fit L for each combination and plot the result, we produce a

0 1goodness(badness)-of-fit curve. The values of b  and b  that minimize this curve are the best
estimates of our model parameters.

1 0Example: In our example, if we allow b  to vary between 0.0045-0.0072 and then set b  to the value
that forces the line thru the centroid, and then for each combination of values recalculate L, we can
plot the results as a goodness (or badness)-of-fit curve. The curve depicts the value of L for every
combination of parameter values evaluated; i.e., each possible line thru the centroid. The lowest
point on this curve represents the combination of parameter values that minimizes L, our badness-

1 0of-fit metric. In this case we can see that best estimate of b =0.0058 and thus b =0.0991. 
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While in the case of linear regression it may make sense to force the line thru the centroid, in other
cases we may not want to impose such constraints. In the more general case, we want to find the
parameters that minimize L? We can think of OLS as working as follows. The best fit line is found
by exploring the entire parameter space by trying all possible combinations of intercept and slope
values – without forcing the line thru the centroid. Again, this solution can be achieved numerically
by trying lots of values of the parameters and choosing the set that minimizes the objective function.
If we compute the lack of fit L for each combination and plot the result, we produce a

0 1goodness(badness)-of-fit surface. The values of b  and b  that minimize this surface are the best
estimates of our model parameters.

0 1Example: In our example, if we allow b  to vary between 0-0.18 and b  to vary between 0.0045-
0.0072, and then for each combination of values recalculate L, we can plot the results as a goodness
(or badness)-of-fit surface. The surface depicts the value of L for every combination of parameter
values evaluated. The lowest point on this surface represents the combination of parameter values
that minimizes L, our badness-of-fit metric. The contours are not close enough near the bottom of

0the surface to see precisely where the minimum is, but we can compute it to be exactly b =0.0991

1and b =0.0058. 
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However, ideally we want an analytical solution that gives the best estimates directly. With our
simple linear model, it turns out that we can use calculus to find the solution, but this is not always
the case with more complex models. In this case, all we need to do is find the derivative of L with

1 1respect to the slope (b ), set this equal to zero and solve for b :

We will not derive the solution here (see most introductory stats books). But briefly, to find the
solution, we need to compute the following ‘corrected sums of squares and products’; although only
the first two below are needed for this purpose, but the third will be used later:
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1 0The estimates of the slope, b , and intercept, b , are:

Example: In our example, if we substitute the corresponding values into the equations above, we get

0 1estimates of b =0.0991 and b =0.0058, which are the roughly same values we obtained using the
numerical approach above.
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Pros and cons of ordinary least squares estimation

• No assumptions about the stochastic component of the model are required, making this an
extremely flexible method.

• If one is trying to find an analytical solution, squared deviations are good because the derivatives
are easily found.

• If the errors are normally distributed, then the sums of squares is identical to other methods of
estimation (such as maximum likelihood, discussed later).

• The squared measure of deviation has an accelerating penalty: a deviation that is twice as large
contributes four times as much to the sums of squares. There is no a priori reason to choose
such a measure. 
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4. Confidence intervals

Thus far, our parameter estimation has focused on so-called ‘point’ estimates of the parameters. For
a frequentist, a point estimate is our best estimate of the true, fixed underlying value in the
population, or the expected (or average) value of our sample estimate under hypothetical repeated
sampling. However, usually we are interested in knowing more than just the point estimate. We
might also want to determine the unreliability or uncertainty associated with each of the estimated
parameters; in other words, the precision of our estimate. Our estimate may be the most precise of
all the possible estimators, but if its value still varies widely under repeated sampling, it will not be
very useful for inference. If repeated sampling produces an estimate that is very consistent, then it is
precise and we can be confident that it is close to the true parameter (assuming that is also
unbiased). Thus, we usually want to compute ‘interval’ estimates as well as point estimates. 

In the classical frequentist framework the ‘confidence interval’ represents our uncertainty in the
fixed (true) but unknown value of the parameter in the underlying population. That is, we assume
that there exists a fixed, true value of the parameter in the population and that our sample-based
estimate of the parameter is merely a random outcome. Thus, the greater the random variability in
the system and the smaller the sample size, the less likely it is that any single sample-based estimate
of the parameter will be close to the true value of the parameter. The confidence interval represents
this uncertainty. In the classical frequentist context, the confidence interval can have a number of
different interpretations, but most often it is interpreted in terms of hypothetical repeated samples:
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“were this procedure to be repeated on multiple samples, the calculated confidence interval (which
would differ for each sample) would encompass the true population parameter say 95% of the
time.” Importantly, the confidence interval is not a probability statement about the true parameter
value; rather, it is interpreted as follows. If we were to repeatedly sample the population and each
time compute a 95% confidence interval, 95% of the time our confidence intervals would be
correct, in that they would contain the true value of the parameter. Conversely, 5% of the time they
would be wrong. All we can do is hope that our original confidence interval is one of the lucky ones
and contains the true value. In this sense, the ‘probability’ associated with confidence intervals is
interpreted as a long-run frequency under hypothetical repeated sampling. Note, this is one of the
major differences between the frequentist and Bayesian approaches, as we shall discuss later.

What we need is an objective method of estimating a confidence interval for each of the parameters.
It turns out that if we are willing to assume a normal error distribution for the stochastic part of the
model, we can usually compute a confidence interval analytically. However, with a nonparametric
model, we make no assumptions about the shape of the error distribution and therefore cannot
analytically compute a confidence interval. We need to find a different solution. One clever solution
is to resample the data in order to generate an empirical sampling distribution for each parameter
and then compute the confidence interval directly from this distribution. This method is known as
bootstrapping, or the nonparametric bootstrap. Below we will briefly discuss both approaches.



Nonparametric inference: ordinary least squares and more         13

Nonparametric bootstrap confidence interval:

You have probably heard the old saying about “pulling yourself up by your own bootlaces”. That is
where the term ‘bootstrap’ comes from. It is used here in the sense of getting ‘something for
nothing'. The idea is very simple. You have a single sample of n measurements, but you can sample
from this in very many ways, so long as you allow some values to appear more than once, and other
samples to be left out (i.e., sampling with replacement). All you do is draw observations at random
from the original sample, replacing each observation after it is selected so that it has the same
chance of being drawn on the next draw. By doing this repeatedly, you can create a new data set by
resampling the original data set.
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The bootstrap has many applications in statistics, but by far its most important use involves
calculating non-parametric confidence intervals for parameter estimates. In this context, the
bootstrap simulates the frequentist concept of obtaining estimates from repeated similar
experiments. It substitutes resampling of one data set for repeated experiments. Here, we simply
create a bootstrap sample, compute the parameter estimate, create another bootstrap sample,
compute the parameter estimate, and repeat this process over and over again, as many as say 10,000
times. The end result is 10,000 bootstrap estimates of the parameter. Each bootstrap sample is like a
new sample of the population. Consequently, the distribution of bootstrap estimates reflects the
sampling variability we might expect in our point estimate of the parameter if we were to repeatedly
sample the population. We simply take the 2.5% and 97.5% quantiles of the bootstrap distribution
to compute a 95% confidence interval.

0 1Example: 95% bootstrap confidence intervals: b = [0.039,0.166] and b =[0.0044,0.0076] 
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Parametric confidence interval:

Now let’s assume that we are willing to assume that the errors are independent and identically
distributed according to a normal distribution. In other words, let’s assume that the errors (or
residuals) are normally distributed about the mean (the expected value from the deterministic part of
the model) and the variance in the errors is constant over the full range of x – the explanatory
variable. Given these assumptions, a parametric confidence interval can be constructed.
Unfortunately, the details of how this done is beyond the scope of this chapter (but see separate
primer on confidence intervals), but we will briefly describe how a parametric confidence interval
can be computed here. 

First we calculate the standard error of the parameter estimate and then multiply it by the
appropriate value of Student’s t, and then subtract this interval from, and add it to, the parameter
estimate to get the corresponding confidence interval. Note, the standard error is simply the standard
deviation in the parameter estimate – that is, the standard deviation in the sampling distribution of
the estimate if we were able to generate repeated estimates from resampling the population – and is
typically given by the standard deviation of the model error divided by the square root of the sample
size, so that the standard error increases with increasing variance and decreases with increasing
sample size. There are extra components to the standard error, however, which are specific to the
uncertainty of a slope or an intercept. Specifically, the standard error for the slope increases with
increasing error variance s  and declines with increasing sample size n and the range of x values (as2
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measured by SSX):

The uncertainty of the estimated intercept increases with increasing variance and declines with
increasing sample size. As with the slope, uncertainty declines with increasing sample size n and the
range of x values (as measured by SSX). Uncertainty in the estimate of the intercept also increases
with the square of the distance between the origin and the mean value of x (as measured by 3x ):2

The confidence interval for each parameter is obtained by subtracting from, and adding to, each
parameter estimate an interval which is the standard error times Student’s t with the appropriate
error degrees of freedom. In this case, the appropriate value of t is given by the 0.975 quantile of the

1t distribution with n-2 degrees of freedom (= 2.048). Thus, the 95% confidence interval for  b  is:

0 1Example: 95% parametric confidence intervals: b = [-0.0048, 0.2301] and b =[0.0041, 0.0076] 
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5. Hypothesis testing

Now that we have fit the model (i.e., have parameter estimates that make the data the most likely
based on our goodness-of-fit metric), the next step in a classical frequentist framework is to test
whether the model is statistically significant. To do this, we have to first establish a null hypothesis,
which is usually stated as the absence of a real relationship (e.g., the slope of the regression line is
zero; i.e., no dependence of y on x). Then, we can calculate a p-value, which is the probability of
observing our data (the observed slope) or something more extreme (an even steeper slope) (under
hypothetical repeated sampling) if the null hypothesis were true. Frequentists also typically set up a
decision rule for rejecting the null hypothesis, which involves a priori establishing a critical p-value,
usually p<0.05, below which the null hypothesis will be rejected. This decision rule establishes the
rate at which we are willing to accept making a Type I error – rejecting the null hypothesis when it is
true. If we reject the null hypothesis with a p=0.05, by definition we will be wrong 5% of the time.

There are at least a couple of different ways to compute a p-value for the null hypothesis of no slope

1(b =0). The conventional approach involves computing the relevant test statistic, the Student’s t or
F-ratio (described below) in this case, for the observed data and comparing this value to the
corresponding probability distribution. This approach is parametric because a theoretical probability
distribution (t or F in this case) is assumed to represent the probability distribution of the test
statistic. However, in our nonparametric framework we are not willing to assume any particular
probability distribution. Thus, we need to find a different solution. Once again a clever solution was
found in data resampling. Below we will briefly discuss both approaches. 
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Nonparametric randomization test of significance:

The bootstrap method described above offers a powerful means of quantifying uncertainty in
parameter estimates when parametric approaches are suspect and, as such, it can be used to
construct hypothesis tests. For example, does the 95% bootstrap confidence interval contain zero?
If not, we can reject the null hypothesis that the parameter is equal to zero with high confidence. An
alternative to the bootstrap for testing null hypotheses is the Monte Carlo randomization test. Like the
bootstrap, the idea is quite simple and can be readily applied in almost any circumstance. 

Briefly, the procedure
involves repeatedly
resampling the original data
after removing any real
structure (i.e., randomizing
the data) to generate an
empirical distribution of the
test statistic under the null
hypothesis of no real
structure. There is no need
to assume an underlying
theoretical (i.e., parametric)
distribution because the
distribution is generated
empirically through
resampling the original data.
The basic approach is very
simple. All we do is
randomly shuffle some or all
of the data, taking care not
to produce observations
that fall outside the domain
of the original data. The
intent is to remove real
structure from the data, and
this is usually accomplished
by shuffling just one of the
variables, although this can
vary depending on the
context of the test. After
generating a random
permutation of the data, we
calculate the test statistic of
interest. 
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We repeat the process over and over, usually 1,000-10,000 times, and the permutation distribution
of the statistic provides an empirical distribution of the test statistic under the null hypothesis of no
real structure. We compare the original test statistic to the permutation distribution to compute an
exact p-value. In this example, let’s say that we computed the F-ratio as our test statistic. The F-ratio
is the ratio between two variances, in this case the variance explained by the regression model
(numerator) and the error (or unexplained) variance (denominator), and it is an objective measure of
how well the model fit the data, since the larger the F-ratio the more of the variance in the data is
explained by the model. More on the computation of the F-ratio below.

Note, the randomization test procedure can be applied to a test statistic, such as the F-ratio, or more
directly to any model parameter of interest. For the latter, we might compute the random
permutation distribution of the slope parameter b1 and compare our original slope estimate to this
distribution to compute an exact p-value, as shown here in the figure.
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Note the difference between the randomization test procedure and the bootstrap. With the
bootstrap, the original data structure is maintained; that is, the individual observation vectors are left
intact. We simply draw intact observation vectors randomly (with replacement) to represent the
randomness in the sampling process. With the Monte Carlo randomization procedure, the original
data structure is destroyed by randomly shuffling some of the data. In this manner, the  bootstrap
generates a distribution of the test statistic under the alternative hypothesis (of real structure), which is
used to construct a confidence interval for the statistic, whereas the Monte Carlo randomization
procedure generates a distribution of the test statistic under the null hypothesis (of no real structure)
which can be used directly to compute a p-value and conduct a hypothesis test.

Example: Based on the results of the nonparametric randomization test procedure shown here, we
can conclude that the probability of observing our data if the null hypothesis of no relationship
between x and y were true is less than 0.001. Hence, had we established a decision rule for rejecting
the null hypothesis at the p<0.05, clearly we would reject the null hypothesis.
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Parametric test of significance:

For the moment, let’s assume that we are willing to assume that the errors are independent and
identically normally distributed. In other words, let’s assume that the errors (or residuals) are
normally distributed about the mean (the expected value from the deterministic part of the model)
and the variance in the errors is constant over the full range of x – the explanatory variable. Given
these assumptions, there are a couple of different ways to test the same null hypothesis. I will
describe what is called the ‘analysis of variance’ approach. The idea is relatively simple: we take the
total variation in y, SSY, and partition it into components that tell us about the explanatory power of
the model. The variation that is explained by the model is called the regression sums of squares,
SSR, and the unexplained variation is called the error sums of squares, SSE. Then, SSY = SSR +
SSE. We already computed SSY (above). All we need to compute is either SSR or SSE and we have
all three quantities by subtraction. SSE is equal to the sums of squares of the deviations of the data
points from the fitted model, which is exactly our lack of fit measure (L) that we defined above. 

Now that we have all of the sums of squares, we need to think about the degrees of freedom. Degrees of
freedom tell us about how much data (number of observations) we have relative to the number
parameters we have. We need to have more observations than parameters at a minimum, and the
more observations we have relative to parameters, the better off we should be, right? So we need to
adjust our sums of squares to reflect our degrees of freedom. We had to estimate one parameter, the
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overall mean, Gy , before we could calculate SSY, so the total degrees of freedom are n-1. The error
sums of squares SSE was calculated after two parameters had been estimated from the data (the
intercept and slope), so the degrees of freedom are n-2. Finally, the regression model added just one

1 0parameter, the slope b , compared with the null model, which has only the intercept b , so there is
one regression degree of freedom. Note, the regression and error degrees of freedom always add up
to the total degrees of freedom; this is always true in any analysis of variance table.

Now that we have the sums of squares and their degrees of freedom, next we need to compute the
mean squares simply by dividing the sums of squares by their degrees of freedom. Now we have two
variances: the regression variance (regression mean squares) and the error variance (error mean
squares). Finally, we can work out the F-ratio, which is a ratio between variances. In this case, we
divide the regression variance by the error variance. To test whether the F-ratio is significantly large
to reject the null hypothesis, we compare the observed F with the critical value of F, expected by
chance alone if the null hypothesis were true. 
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There are two ways to assess the F-ratio. One way is to compare it with the critical value of F. For
this, we can use the quantiles of the F distribution to find the critical value of F for a specified
quantile or probability of observing an F this large or larger. If our observed F is larger than this
critical value of F, we can be confident in rejecting the null hypothesis. The other way, which is
much better than working rigidly with a specified uncertainty level (e.g., p<0.05), is to ask what is the
probability of getting a value of F as big as the one we observed or bigger if the null hypothesis is
true. For this, we use the cumulative probability distribution. In either case, it is clear in our example
that we should reject the null hypothesis as there is almost no chance we would have observed an F
of 44.9 with 1 numerator degree of freedom and 28 denominator degrees of freedom if the null
hypothesis (no slope) were true. 

Example: Based on the results of the parametric testing procedure shown here, we can conclude that
the probability of observing our data if the null hypothesis of no relationship between x and y were
true is less than 0.001. Hence, had we established a decision rule for rejecting the null hypothesis at
the p<0.05, clearly we would reject the null hypothesis.
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6. Model comparison

Up till now, we have assumed a single statistical model and then estimated parameters assuming that
we knew or believed this model to be correct. Usually, however, we are not that lucky because we
do not know that the model is correct. More often than not, we have alternative models that we
would like to consider. Ideally, we would like a method for determining which model has the
strongest support in the data. First, we need an objective measure of how well each model fits the
data. Fortunately, we already have a goodness(badness)-of-fit measure, the sums of squares. We can
confront each of the models with the data and estimate the parameters that give the minimum sums
of squares for each model. The model with the minimum sums of squares should be our best model,
right? This would be true if each of the models contained the same number of parameters, but is it
fair to compare a model with 2 parameters to a model with 3 or 4 parameters? We expect a model
with more parameters to fit better in the sense that the sums of squares should be smaller if we add
more terms to the model. But we also expect that adding more parameters to a model leads to
increasing difficulty of interpretation. So how do we compare a model with m parameters to a model
with p parameters?

1 2 mSuppose that a model with m parameters has the sums of squares L(ö , ö ,...,ö ), which will generally
decrease as m increases. However, it makes sense to penalize the introduction of additional
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parameters. There are a number of ways in which this can be done. The simplest comparison
replaces the sums of squares L by the following:

Example: Let’s say that we wish to consider three competing models of increasing complexity: 

Model 1: BRCR = ls (%late-successional forest)
Model 2: BRCR = ls + p.contag (patch contagion; a measure of habitat aggregation)
Model 3: BRCR = ls + p.contag + s.sidi (stand Simpson’s diversity index; a measure of

landscape compositional diversity)

There are a couple of things about these competing models to note. First, they are all simple linear
models, but of increasing complexity. Second, they are nested models in terms of the explanatory
variables; i.e., model 1 is nested with model 2, which is nested within model 3. Based on the
penalized goodness(badness)-of-fit criterion above, the models rank from best to worst as follows:
model 3 = 0.0192; model 1 = 0.0199; model 2 = 0.0207. Thus, we can conclude that model 3 is the
best model given the data. Importantly, we cannot say that model 3 is truly the best model for this
system, only that it is the best among those considered here – there will always be other models that
we have not considered.
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1 2 mThe model that minimizes L (ö , ö ,...,ö ) should be our preferred model, right? In general, we might*

ask how the preferred model would act with other data sets. In a sense, we would like to know how
often our preferred model would turn out to the best model if we were able to sample the
population repeatedly. Once again, the bootstrap method is useful in this context. We can use the
bootstrap method to generate additional data sets and then compare various models using the
criterion above. This kind of comparison gives us a sense of how confident we should be with the
model that wins the competition arbitrated by the actual data set. This kind of comparison brings us
closer to a Bayesian viewpoint. Almost all environmental models can be built with differing levels of
complexity; it is easy to add additional parameters. The sums of squares provides a way of
quantifying the support the data offers for each model. However, when we want to chose a “best”
model, then we need a criterion such as the one above. The choice of a best model implies that in
some way we reject the others and accept the best one. A Bayesian would, instead, want to assign
relative degrees of belief to each of the competing models. The comparison of models with
bootstrap data sets lets us mimic the Bayesian approach.

Example: We constructed 1000 data sets via bootstrap with replacement. For each data set we
computed the penalized goodness(badness)-of-fit criterion above and declared the model with the
smallest value the ‘best’ model. We computed the proportion of times each model was declared the
‘best’ model, with the following result: model 1 = 0.310; model 2 = 0.062; model 3 = 0.628. Thus,
there is fairly compelling evidence that model 3, the most complex model, is the ‘best’ model.
However, it might be more useful to say that the weight of evidence is 63% in favor of model 3,
31% in favor of model 1 and only 0.6% in favor of model 2.
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7. Predictions

The final goal of statistical inference is to make predictions. In many cases, once we confirm that
our model is a good one, say by confirming that it is significantly better than the null model (e.g., of 
no relationship between x and y) or that it is the best among competing models considered, we
might want to use this model to predict values for future observations or for sites not sampled.
There are two kinds of prediction, and these are subject to very different levels of uncertainty:

• Interpolation – which is prediction within the measured range of the data.
• Extrapolation – which is prediction beyond the measured range of the data.

Extrapolation is far more problematical than interpolation, and model choice is a major issue.
Choice of the wrong model can lead to wildly different predictions beyond the measured range of
the data, even if the predictions within the range are similar among different models. Thus,
extrapolation should be done with extreme caution. For either purpose, we can use the fitted
deterministic model to predict point estimates (i.e., expected values) of new observations, but
without a formal model for the stochastic component of the model, it is difficult to provide
confidence (prediction) limits on those predictions. That is to say, we can easily give a point estimate
for the prediction – which is the expected value from the deterministic model, but it is much more
difficult to give an interval estimate for the prediction. 
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Parametric prediction interval:

For the moment, let’s assume that we are willing to assume that the errors are independent and
identically normally distributed as before. Given these assumptions, a parametric prediction interval
can be constructed for predicted values. The idea is relatively simple: we calculate the standard error
for a predicted value (not the parameter estimate, as before) and multiply it by the appropriate value
of Student’s t and then subtract this interval from, and add it to, the predicted value (i.e., the
predicted point estimate or expected value) to get the corresponding prediction interval. Note, the
standard error for a predicted value in regression is computed a little differently than the standard
error for a parameter estimate. Specifically, the standard error for a predicted value increases with
the square of the difference between mean x and the value of x at which the prediction is made –
reflecting increasing uncertainty as we get farther from the mean of the data. As with the standard
error of the slope parameter estimate, the wider the range of x values (as measured by SSX) and the
bigger the sample size, n, the lower the uncertainty:
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The prediction interval for each predicted value is obtained by subtracting from, and adding to, each
predicted value an interval which is the standard error times Student’s t with the appropriate error
degrees of freedom. In this case, the appropriate value of t is given by the 0.975 quantile of the t
distribution with n-2 degrees of freedom (= 2.048). Thus, the 95% prediction interval for y given the
value of x at which the prediction is made is:

Example: For the example data set, we can compute the 95% prediction interval for a range of x
values and plot the result as a prediction band on the original scatter plot, as shown.
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Nonparametric bootstrap prediction interval:

Not surprisingly, nonparametric approaches employing procedures such as the bootstrap have been
developed for computing prediction intervals for cases where we can make no assumptions about
the shape of the error distribution. Unfortunately, these approaches are poorly described and rather
complex. Therefore, we will not attempt to delve into the methods for nonparametric prediction.
Suffice it to say that it is simple to predict point estimates from a nonparametric model – simply
apply the fitted deterministic model, but to provide an estimate of uncertainty on those predictions
requires a sophisticated approach that goes beyond the scope of this treatment.
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8. Considerations with nonparametric inference

The nonparametric framework for statistical inference can be very useful, but it has some serious
drawbacks that proponents of parametric inference are quick to point out. 

1. Requires minimal assumptions about the error... The major appeal of nonparametric inference is that it
requires fewer assumptions about the model than parametric approaches. In particular,
nonparametric inference does not require a particular probability distribution to be specified for
the stochastic component of the model.

2. Weak statistical inference... As a consequence of number one above, in general the inferences from
a nonparametric procedure are weaker than from a parametric procedure. This is because the
statistical model is a less complete description of the underlying population. And the less that is
known or assumed about the underlying population, the less one can say about it from any
sample data set. Without specifying the error model, it is more difficult to conceive of the
statistical model as a data-generating mechanism and more difficult to simulate new data.

3. Reliance on data resampling methods... As a consequence of number one above, nonparametric
approaches typically invoke data resampling methods such as the bootstrap and Monte Carlo
randomization to solve many of the problems of statistical inference. These procedures are
computationally intensive methods that can often serve as effective substitutes for the
corresponding parametric method. Interestingly, these resampling methods come as close as we
can to imitating the frequentist approach to statistical inference, which is based on the idea of
hypothetical repeated sampling. The bootstrap, for example, does just that – repeatedly draws
samples by resampling the original data. The major difference is that in the true frequentist
approach, we would resample the population not the original data set.
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