Analysis of Environmental Data

Chapter 6b. Conceptual Foundations:
Hypothesis Testing Concepts
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Make inferences

m (lassical (frequentist) statistical inference generally
involves testing null hypotheses, computing p-values,
and often making decisions to reject the null hypothesis
or not and assessing the associated decision errors.

1. Was is null hypothesis testing?

Recall that statistical inference involves confronting models with data to estimate model parameters,
test hypotheses, compare alternative models and make predictions, and there are different inference
frameworks for conducting such inference. Classical Frequentist inference involves heavy reliance
on hypothesis testing. Indeed hypothesis testing has been the trademark of statistical inference for
much of the past century, and only recently has the emphasis shifted away from hypothesis testing,
to other aspects of statistical inference such as parameter estimation and model comparison.
Nevertheless, because hypothesis testing is so deeply rooted in statistical inference and is still
perhaps the dominant form of statistical inference, it is critical to understand some of the concepts
that underpin hypothesis testing before we delve into the details of the various inference

frameworks.
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Hypothesis testing generally revolves around the nu// hypothesis, which is a statement about the system
under investigation that you are trying to disprove. The null hypothesis is always specified in terms
of the proposed statistical model, which provides a probability framework against which to compare
your data. Usually the null hypothesis is a statement of “no effect” or “no relationship”, which often
translates into a model parameter equal to zero. For example, in the brown creeper example, a
reasonable null hypothesis is that there is no relationship between brown creeper abundance and the
extent of late-successional forest, which would translate into a slope of zero in the model. Similarly,
in the tree pruning example, a reasonable null hypothesis is that drag does not differ among pruning
types, which would translate into a single mean across pruning types. However, it is important to
recognize that the null hypothesis does not have to represent the absence of a relationship. There
are many circumstances where that would be a “silly” null hypothesis that is virtually guaranteed to
be falsified by any dataset. For example, if we were interested in the relationship between stream
discharge and watershed area, a null hypothesis of no relationship is silly since we are certain to
reject it with any reasonable dataset. A more interesting null hypothesis would be that the
relationship is linear; i.e., that stream discharge increases by a constant amount for every unit
increase in watershed area. Deviation from this expectation then might reveal something interesting
about the hydrological properties of the watersheds under investigation.
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2. P-values

The null hypothesis provides a probability framework against which to compare our data.
Specifically, through the proposed statistical model, the null hypothesis can be represented by a
probability distribution, which gives the probability of all possible outcomes if the null hypothesis is
true; it is a probabilistic representation of our expectations under the null hypothesis.

We can specify the null probability distribution for our data (random variable y) or for any statistic
derived from our data (e.g., the mean, or the slope). Recall that there are probability distributions for
random variables (e.g., normal, gamma, binomial, poisson, etc.) and there are probability
distributions for test statistics derived from our data (e.g., # F, chi-square). For now, it doesn’t
matter whether we are evaluating a random variable or a test statistic, the concepts described below
are the same. In addition, it doesn’t matter what probability distribution we are working with, the
concepts described below are the same. But for purposes of familiarity, let’s let our probability
distribution represent a normally distributed random variable.

In this context, the null probability distribution (top figure) represents the probability of observing
any particular value of our random variable y if the null hypothesis is true. The probability of
observing a value of y as large or larger than the one we observed (i.e., for a one-sided evaluation,
see below) under the null distribution (i.e., if the null hypothesis is true) is known as the p-value,
which was originally proposed by the famous early statistician Sir Ronald Fisher. The p-value for this
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one-sided evaluation is equal to the proportion of the null distribution that is to the right of our
observed value. According to Fisher, the p-value can be viewed as a measure of the strength of
evidence against the null hypothesis. The smaller the p-value the less likely it is that we would have
observed that particular value if it came from the null distribution, and thus the greater the evidence
that the null hypothesis is wrong.

Since the p-value is computed (for a one-sided evaluation) as the proportion of the null distribution
that is as larger or larger than the observed value (i.e., the tail of the probability distribution), we can
easily calculate the p-value from the cumulative probability distribution. Recall that the cumulative
probability distribution gives the probability of being less than or equal to any particular value, so
the p-value must be its compliment (1-cdf(y)). Note, if we are computing the p-value for a discrete
probability distribution (e.g., Binomial, Poisson, Geometric, etc.), then we would be interested in
finding the compliment of the cdf(y) for the discrete outcome that is one less than the value of
interested. For example, if we were interested in the probability of observing 8 successes of out of
10 trials given a per trial probability of success = 0.3, as given by the binomial distribution, we
would compute the cumulative probability of observing 7 or less successes and then take its
compliment to get the probability of observing 8 or more successes. For a continuous probability
distribution (e.g., Normal, Gamma, Exponential, etc.), we simply compute the cumulative
probability of observing the observed value or less and then takes its compliment, because with a
continuous probability distribution the next smallest possible outcome from the observed value is
smaller by an infinitely small amount such that the cumulative probability asymptotically approaches
the same value.
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It is important to remember that p-values apply equally to random variables and any statistics
derived from them (since they too are “random” variables), which includes estimates of model
parameters and test statistics.

For example, consider a continuously distributed random variable Y. In this example, Y is brown
creeper abundance from our familiar data set, but it could be any random variable. The empirical
probability distribution of Y is shown in the top figure (dashed line). Let’s say we want to know the
probability of observing a value of Y; > 0.75 under the null hypothesis that Y is distributed Gamma
with shape and scale parameters equal to 1.61 and 0.24, respectively. This “null” distribution is
shown in the top figure (solid line). Calculating the p-value for Y; > 0.75 is simple. It is the
proportion of the null (Gamma) distribution to the right of 0.75, shown in the dark shaded area.
Note, we could also ask what proportion of the empirical distribution is to the right of 0.75, but this
represents the observed distribution and remember that we calculate p-values under the null
distribution. We can also derive the p-value from the cumulative probability distribution, as it is
done in practice, as shown in the bottom figure. In this case, since we are asking a one-side question;
i.e., the probability of Y, greater than or equal to a particular value, we compute the p-value as the
compliment of the cumulative probability of observing Y; < 0.75, which in this case is roughly 0.15.
Hence, we can say that there is roughly a 15% chance of observing a brown creeper abundance of
greater than or equal to 0.75 if in fact the brown creeper abundance was distributed Gamma with
shape=1.61 and scale=0.24.
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Remember, p-values apply equally to random variables with any probability distribution.

For example, consider a discretely distributed random variable Y. In this example, Y is a count of
earthworms in a fixed-area plot. Let’s say we want to know the probability of observing a value of Y;
> 4 under the null hypothesis that Y is distributed Poisson with Lambda (mean count) = 2. This
“null” distribution is shown in the top figure. Note, it is shown as a barplot because it is a discrete
distribution. Calculating the p-value for Y; >4 is simple. It is the proportion of the null (Poisson)
distribution to the right of 3, shown in the dark shaded area. We can also derive the p-value from the
cumulative probability distribution, as it is done in practice, as shown in the bottom figure. In this
case, since we are asking a one-side question; i.e., the probability of Y; greater than or equal to a
particular value, we compute the p-value as the compliment of the cumulative probability of
observing Y;< 4, which in this case is the same as finding the cumulative probability for the value of
3, since this represents 3 or less, and taking its compliment, which in this case results in a p-value of
roughly 0.15. Hence, we can say that there is roughly a 15% chance of observing 4 or more
earthworms in a plot if in fact the mean count of earthworms is 2 across all plots.
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Remember, p-values apply equally to statistics derived from random variables. For example, a
consider a model parameter ¢ (phi). Let’s say that ¢ is the slope of the linear regression of extent of
late-successional forest on brown creeper abundance from our familiar data set, but it could be any
model parameter. Let’s say that we estimated the slope using some estimator such as ordinary least
squares or maximum likelihood. Now we want to know if the observed slope is statistically
significant; i.e., whether it differs from zero. Because the slope is a statistic and not raw data, we
can’t use one of the probability distributions derived for random variables (e.g., Normal, Gamma,
etc.). Instead, we need to use one of the probability distributions designed for statistics. In this case,
the slope parameter can be converted into a “#statistic”” by taking the observed value (in this case,
£=0.0006) and subtracting the expected value under the null hypothesis (4=0) and dividing by the
standard error of that statistic (in this case, SE,=0.0008). The standard error is the standard
deviation of the sampling distribution of the test statistic. We will not concern ourselves right now
with exactly what a standard error is or how it is calculated. For now, suffice it to say that it
“standardizes” the observed value of the statistic much the same we previously z-score standardized
raw variables to put them on a standard scale. Once we convert the slope parameter into a £statistic,
we can evaluate the observed value #against the expected distribution under the null hypothesis of
zero slope. The ~distribution under null hypothesis is shown in the top figure and the observed
value of #is indicated by the red arrow. The p-value is the area to the right of this point, shown in
dark shading. As before, we can also derive the p-value from the cumulative probability distribution,
as shown in the bottom figure. If we ask a one-sided question; i.e., the probability of # greater than
or equal to the observed value, we compute the p-value as the compliment of the cumulative
probability of observing our #under the null hypothesis, which in this case is a very small number.
Hence, we can say that there is almost no chance of observing a slope of 0.006 if in fact the true
slope was zero.
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Remember, p-values apply equally to any test statistic. For example, a consider a test statistic such
as I, which is defined for the ratio of two normally distributed variances, but it could be any test
statistic. Let’s take the tree pruning example and ask whether the method of pruning (3 types) has an
effect on drag (i.e., wind-induced stress) on a focal tree species. We would like to know whether the
variation in drag among pruning types (call this the treatment or model variance) is greater than the
residual variation in drag within pruning types. In other words, does pruning type explain a
significant amount of the variation in drag. This boils down to a ratio of two variances: the variance
among treatment types, and the variance within treatment type. The variance among types is the
variation we are trying to explain with our model, and the variation within types is the residual
variation that cannot be explained by our model. The ratio of these two variances, under the
assumption that they are both normally distributed, is known as an F-statistic (or F-ratio). Note, this
is also known as “Analysis of Variance” or (ANOVA). Now, we want to know if the observed F-
ratio is statistically significant; i.e., whether it differs from zero. Because the F-ratio is a statistic and
not raw data, we can’t use one of the probability distributions derived for random variables. Instead,
we need to use one of the probability distributions designed for statistics. In this case, the F-ratio
has its own probability distribution — the F distribution. We can compute the p-value for our
observed F-ratio by evaluating the probability of observing an F as large or larger under the null
hypothesis of no treatment effect. Under the null hypothesis, F=0, since none of the variance is
explained by treatments (i.e., means are all equal). The F-distribution under null hypothesis is shown
in the top figure and the observed value of F is indicated by the red arrow. The p-value is the area to
the right of this point, shown in dark shading. As before, we can also derive the p-value from the
cumulative probability distribution, as shown in the bottom figure. We compute the p-value as the
compliment of the cumulative probability of observing our FFunder the null hypothesis, which in
this case is a very small number. Hence, we can say that there is almost no chance of observing the
differences among treatments if in fact the true means were the same.
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One-side test.--The interpretation given above for a p-value is correct for an “upper one-sided test”;
i.e., when we are interested in knowing the probability of observing a value as large or larger than
the one we observed if the null hypothesis is true. In this case, we are only interested in the
proportion of the distribution that is to the right of our value — the upper tail of the distribution.
However, we could equally be interested in knowing the probability of observing a value as small or
smaller than the one we observed if the null hypothesis is true. In this case, we are only interested in
the proportion of the distribution that is to the left of our value — the lower tail of the distribution.
The latter would be referred to as a “lower one-sided test”. The p-value for a lower one-sided test is
computed similarly, except when computed using the cumulative distribution (as is usually done),
there is no need to take the compliment since the cumulative distribution already gives the
proportion of the distribution that is to the left of the observed value.

Two-sided test.—More often than not, we are not interested in testing whether the observed value is
larger than expected, or conversely smaller than expected (one-sided tests), but rather whether the
observed value is different (either larger or smaller) than expected. This constitutes a “two-sided
test” because we are interested in both tails of the distribution. Specifically, for any particular value
of Y (positive or negative) we can ask what is the probability of observing a Y, that is different from
expected. If Y; is positive, we compute the upper tail probability as before (i.e., proportion to the
right of the observed value) and then add it to the comparable lower tail probability (i.e., proportion
to the left of a value equidistant from the expected). Using the cumulative distribution, we simply
add the compliment of the upper to the lower.
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3. Neyman-Pearson Decision Framework

Some other famous early statisticians (Jerzy Neyman and Egon Pearson) proposed that it would
make sense to adopt a decision rule to decide when to “fail to reject” the null hypothesis and when
to “reject” the null hypothesis in favor of an alternative hypothesis. Note, they made the notion of
an alternative hypothesis explicit; i.e., that we conceptualize an alternative distribution, which is
important to the concept of power discussed below. They proposed that when the p-value gets
smaller than some critical value, known as a/pha, that we decide to reject the null hypothesis. So, if
we compute the p-value for our observed Y; (or test statistic) and it is smaller than a/pha, we reject
the null hypothesis in favor of our alternative hypothesis. By convention, the a/jpha level is usually set
at 0.05. Thus, if the p-value<0.5, we reject the null hypothesis; otherwise, we fail to reject it
(technically, we can never “accept it” since we can never prove that it is true). Note, if the p-value is
less than a/pha and we therefore decide to reject the null hypothesis, there is a chance that we are
making a mistake; i.e., that the null hypothesis is actually true and we simply observed one of the
unlikely but possible outcomes. Making this mistake is known as a Type I error, which is simply the
probability of wrongly rejecting the null hypothesis. By convention, science demands that we keep
the Type I error rate very low (<0.05), because science has deemed it unwise to accept an alternative
until the evidence is overwhelmingly in favor of it — analogous to the innocent until proven guilty

concept that underpins our legal philosophy.
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Beta—While alpha sets the critical p-value for rejecting the null hypothesis, and thus determines the
Type I error rate that we are willing to accept, befa addresses another kind of error. Beza refers to the
probability of wrongly accepting (or failing to reject) the null hypothesis. In other words, let’s
suppose the null hypothesis is actually wrong and the alternative hypothesis is correct, but we fail to
reject the null hypothesis. Then we have made a mistake known as a Type II error, which is simply the
probability of wrongly accepting (failing to reject) the null hypothesis. Beza is equal to the area under
the alternative probability distribution corresponding to a decision to accept (fail to reject) the null
hypothesis. Thus, beza is dictated by alpha because alpha determines the decision to accept or reject
the null hypothesis. It is important to note that beza is associated with the alternative distribution,
because beta refers to the case when the alternative distribution is correct (and the null is wrong).
Because of the convention to control a/pha and the Type I error rate, beta and the Type II error rate
is an emergent property of the situation; the value of bezz depends on how much the null and

alternative distributions overlap and on the user-specified value of apha.

Power—While beta gives the probability of wrongly accepting the null hypothesis, power is the
probability of correctly rejecting the null hypothesis. Power is the logical compliment of beza under
the alternative distribution. Thus, in the figure shown, power includes all of the area under the
alternative distribution except that given by befa (i.e., it includes the area depicted as a/pha under the
null; the dark shaded area). If the alternative hypothesis is true, beza gives the probability of making
the wrong decision (to accept the null), while power gives the compliment — the probability of
making the right decision. Arguably, power is something we want lots of — “statistical” power that is!
We generally want to be able to reject the null hypothesis in favor of our alternative if it is the right

thing to do, so we would like to constructs tests that have high power.
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Once you understand the concept of power it is easy to see why power is affected by changes in
alpha, sampling variability and effect size — all things that are partially or wholly under our control.

» Effect of alpha on power.—Based on the relationship between ajpha, beta and power, it should be
obvious why changing a/pha atfects power. 1f we increase alpha (i.e., choose a larger p-value to
make it easier to reject the null hypothesis, but at the cost of increasing the Type I error rate),
power will increase, all other things equal.
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e Effect of sampling variability on power.—Similarly, it should be obvious why increasing sampling
variability decreases power, all other things being equal. Note, sampling variability is influenced
principally by two things: the inherent variability in the system, and the sample size. Our ability
to precisely estimate any parameter is influenced by how variable the system is. If the system is
highly variable, then for any fixed sample size, the precision of our estimate is going to be low —
because any single sample is likely to vary wildly and not provide a very precise estimate of the
true value. Unfortunately, often there is not much we can do to change the variability of the
system. However, sampling precision is influenced by sample size, because for any given level of
variability, the larger the sample size the better it represents the underlying population and thus
the more confidence we have in our estimate of the population parameter. Fortunately, sample
size is usually under our control, which is why the focus of most power analyses is on
determining the sample size needed to achieve a desired level of power.
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e Effect of “effect size” on power.—Effect size generally refers to the magnitude of difference
between the null distribution and alternative distribution. Effect size can be measured in lots
ways depending on the context of the power analysis, but in our example it is quite simply the
difference between a slope of zero and whatever value we want to specify. For example, we
might want to know the power associated with a slope of 0.0006, an effect size of 0.006-0=0.000.
What is the probability of rejecting the null hypothesis of zero slope if in fact the true slope is
0.006. As the effect size increases, power increases, all other things being equal. This makes
sense, because as the difference between the null and alternative distribution increases, there is
less and less overlap in the distributions, making it very unlikely that we would observe a value
that would lead to a decision to accept the null when it was generated from the alternative
distribution.
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