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1. Frameworks for statistical inference

Recall that the general purpose of statistical inference is to make statements about processes
extrinsic to the data – the underlying environmental system. More specifically, some attempt is made
to describe the underlying population(s) from which the sample was drawn; i.e., to estimate
parameters of an approximating model of the underlying environmental process, to test specific
hypotheses about the underlying environmental process, to chose among alternative explanations of
the underlying environmental process, or to make predictions for samples not yet collected. Not
surprisingly, there are different frameworks or approaches for conducting such inference.
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Parametric inference.–In modern statistics there are two major conceptual frameworks (or paradigms)
for conducting parametric statistical inference – classical frequentist and Bayesian. Both of these
frameworks require statistical models to assume a known probability distribution for the stochastic
component, which makes them “parametric”. Maximum likelihood is sometimes described as a third
framework, but it is really just a particular approach within the general frequentist framework. The
distinction between these frameworks is sometimes blurred, since maximum likelihood and Bayesian
methods are both based on the likelihood – the probability of the observed data given a particular
model or choice of parameters. Thus, likelihood serves as a bridge between the frequentist and
Bayesian frameworks. 

Nonparametric inference.–Sometimes it is not possible to assume any particular error distribution for the
model and “nonparametric” statistical methods must be used. Inferences derived from
nonparametric methods are generally much weaker than those from parametric methods, because
without a probability distribution for the error it is difficult to conceive of the statistical model as a
data-generating mechanism for the underlying environmental system. For example, there is no easy
way to simulate data from a model without specifying a probability distribution for the error. 
Moreover, even if we can estimate the parameters of the model, without a probability distribution it
is impossible to say whether these are the most likely or probable values for the underlying
population. In fact, nonparametric inference really isn’t a conceptual framework or paradigm for
conducting statistical inference at all, it’s more like the lack of an inference framework. Nevertheless,
we include it here as a “framework” because there are many occasions when nonparametric methods
are useful or required.
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2. Philosophical distinction between parametric frameworks

The frequentist and Bayesian inference frameworks can be thought of as more than mere
methodological frameworks, but as philosophies as well.

Frequentist.–The frequentist generally believes that there is a true underlying model (and parameters)
that defines the way the environmental system works, which we cannot perfectly observe?
Consequently, the parameters are assumed to be fixed but unknown, while the sample data are
viewed as a random outcome of the underlying model; i.e., an imperfect representation of the
underlying truth. The frequentist asks: what is the probability of observing the sample data given the
fixed parameters, and finds the values (estimates) of those parameters that would make the data the
most likely (frequently occurring) outcome under repeated sampling of the system (if one were able
to repeatedly sample the system).

Bayesian.–The Bayesian, on the other hand, generally believes that the only knowable truth is the
sample data itself and therefore does not worry about whether there are true fixed parameters or
not. Consequently, the sample data is assumed to be true (since it is observed), while the model
parameters are viewed as random variables. Accordingly, the Bayesian asks: what is the probability of
the model (parameters) given the observed data (and prior expectations), and finds the population
parameters that are most probable. 
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3. Classical frequentist inference framework

Classical frequentist inference (due to Fisher, Neyman, and Pearson) is simply one of the ways in
which we can make statistical inferences and is the one that is typically presented in introductory
statistics classes. The essence of the approach is as follows:
 

1 n• Let y = (y , ..., y ) denote a sample of n observations.
• Suppose an approximating model of y that contains a (possibly vector-valued) parameter ö.

Example:  We  illustrate the approach using a simple ecological model based on the now familiar
Oregon birds data set. For this example, let’s examine the relationship between brown creeper
abundance and the extent of late-successional forest across 30 subbasins in the central Oregon Coast
Range based on the real data collected. For now, we will ignore the real data and simply simulate
some data based on a particular statistical model. Let’s assume a linear model (deterministic
component) with normal errors (stochastic component), which we can write as:

Y ~ Normal(a + bx, ó)

which specifies that Y (brown creeper abundance) is a random variable drawn from a normal
distribution with a mean a + bx and standard deviation ó. In this notation, a and b are parameters of
the deterministic linear model (intercept and slope, respectively), x is data (%late-successional
forest), and ó is a parameter of the stochastic component of the model (the standard deviation of the

i inormally distributed errors). This means that the i  value of Y, y , is equal to a + bx  plus a normallyth

distributed error with mean equal to the linear model and variance ó .2
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• The model parameter ö is assumed to have a fixed, but unknown, value.
• The observed data y are regarded as a single realization of the stochastic processes specified in

the model.
• Any summary of y, such as the sample mean Gy , is viewed as a random outcome.

Example: The parameters of our statistical model,  a, b and ó, are assumed to have true fixed, but
unknown, values, which we cannot perfectly observe. Our sample data are considered a single
random outcome of that underlying model. Summary descriptive statistics such as the mean of
brown creeper abundance or the Pearson’s correlation coefficient between brown creeper
abundance and %late-successional forest are random outcomes as well.
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• A procedure for estimating the value of ö is called an estimator and the result of its application to
a particular data set yields an estimate of the fixed parameter ö.

• The estimate is viewed as a random outcome because it is a function of y, which is also regarded
as a random outcome.

Example: Here we used the method of ordinary least squares (OLS) to estimate the values of the
parameters a, b and ó, but we could have just as easily used the method of maximum likelihood
estimation (MLE). Under the assumptions of this model, namely that the errors are normally
distribution, these two methods produce equivalent point estimates of the parameters. For now, we
need not worry about the details of the particular estimation method (more on this in the next
chapters). Suffice it to say that either method produces parameter estimates that make our observed
data the most likely outcome under repeated sampling.
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• To make inferences about ö, classical statistics appeals to the idea of hypothetical outcomes
under repeated sampling; i.e., the estimate of ö is viewed as a single outcome that belongs to a
distribution of estimates associated with hypothetical repetitions of an experiment or survey.

• Under this view, the fixed value ö and the assumptions of the model represent a mechanism for
generating a random, hypothetical sequence of data sets and parameter estimates:

1 2 3(y, ö8 ), (y, ö8 ), (y, ö8 ), ...

Example: Let’s assume that our parameter estimates are the true, fixed values of the population
parameters; a=0.099 b=0.006 and ó=0.141 . If we were to repeatedly draw samples from this
population and each time estimate the parameters from the sample, we would generate a distribution
of estimates in which the true values are the most likely or frequently occurring. Note, this is a
hypothetical distribution, as repeated sampling of the population is almost never practical in the real
world.
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• Therefore, probability statements about ö (i.e., inferences) are made with respect to the
distribution of estimates of ö that could have been obtained in repeated samples.

• In classical statistics, the role of probability in computing inferences is based on the relative
frequency of outcomes in repeated samples – hence the name “frequentist”.

• Note, frequentists never use probability directly as an expression of degrees of belief in the
magnitude of ö. Probability statements are based entirely on the hypothetical distribution of  ö8 .

Example: In this example, using a frequentist approach we could not legitimately claim that our
estimates are the most probable, only that they are the most likely to have given rise to our data – if
we had been able to repeatedly sample the population. In practice, however, likelihood is often
interpreted as a probability even though it is not in the strictest sense – a point that a Bayesian is
keen to point out.
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4. Bayesian inference framework

Bayesian inference represents an alternative approach to model-based inference. Surprisingly, the
Bayesian framework is actually much older than the frequentist framework, dating back to 1763 with
a paper written by Thomas Bayes, but it fell out of favor with the advent of the frequentist approach
in the early 1900s and only recently, since the 1990s, has regained popularity. It is now the hottest
area of modern statistics. The essence of the approach is as follows:
 

1 n• Let y = (y , ..., y ) denote a sample of n observations.
• Suppose an approximating model of y that contains a (possibly vector-valued) parameter ö.

Example:  We use the same example to illustrate the differences between frameworks. Note, the
sample data is the same, as is the approximating model. 
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• In frequentist inference, the model parameter ö is assumed to have a fixed, but unknown, value.
In Bayesian inference, the model parameter è is treated as a random variable and the
approximating model is elaborated to include a probability distribution for ö that specifies one’s
beliefs about the magnitude of ö prior to having observed the data – this elaboration is called the
prior distribution. The prior distribution is necessary in order to make the Bayesian approach work,
but we will not worry about that here.

Example: The parameters of our statistical model,  a, b and ó, are treated as random variables, not
fixed as in the frequentist approach. In fact, in the Bayesian approach, it is mute whether the
parameters are believed to be truly fixed or not since we can never confirm them as such. The best
we can do is make probability statements about their values. Importantly, in the Bayesian approach
we have to specify our prior belief about the values of the parameters. For example, we might
specify our prior belief that the slope parameter (b) in the linear model is normally distributed with a
mean of 0.004 and a standard deviation of 0.001 and then see whether the sample data conforms to
this expectation or differs.
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• In the Bayesian view, computing an inference about ö is fundamentally just a probability
calculation that yields the probable magnitude of ö given the assumed prior distribution and
given the evidence in the data.

• To accomplish this calculation, the observed data y are assumed to be fixed (once the sample has
been obtained), not a random outcome as in the frequentist view, and all inferences about ö are
made with respect to the fixed observations y.

Example: Here we used a Bayesian method to estimate the most probable values of the parameters
a, b and ó. For now, we need not worry about the details of this particular estimation method (more
on this in the next section). Suffice it to say that this method produces parameter estimates that are
the most probable given our observed data and prior beliefs.
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• Unlike frequentist statistics, Bayesian inferences do not rely on the idea of hypothetical repeated
samples or on the asymptotic properties of estimators of ö.

• Probability statements (i.e., inferences) about ö are exact for any sample size under the Bayesian
paradigm.

Example: Recall that in the frequentist approach we estimated parameters that, if true, would make
the data the most likely outcome under hypothetical repeated sampling. In the Bayesian approach,
however, we make no reliance on hypothetical repeated sampling. Instead, we estimate the posterior
probability distribution of each of parameter – our best estimate of its probability distribution given the
observed data and some prior knowledge of its distribution. For now, let’s not worry about how we
estimate a posterior probability distribution, since it involves a couple of tricks. What matters is that
with our estimate of the posterior distribution, we can ask questions like what is the most probable
value of that distribution?
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5. Comparison of Inference frameworks

The classical frequentist and Bayesian inference frameworks differ in a number of important and
some not so important ways. Each framework has proponents that are quick to point out the
drawbacks of the other. Let’s review a few of the more notable differences and opposing points of
view here; we will address additional points of comparison later.

1. Random model versus random data.–Implicit in the frequentist approach to estimation is that there is a
fixed quantity in nature, the parameter(s), that we wish to measure. In short, for a frequentist it is
parameters that are fixed while it is the data that are random. This is diametrically opposed to the
Bayesian point of view. For a Bayesian it is the data that are fixed while the parameters are random.
Since we can never know whether any model is true, Bayesians argue that it does not make sense to
condition on something we can never observe. Bayesians argue that we should instead determine the
probability of the model given the data (i.e., condition on the data), since the data is the only thing
we know for certain.

The notion that the parameter is a fixed quantity in nature causes problems in interpretation for the
frequentist. When estimating a parameter we usually derive both point and interval estimates. The
point estimate is our best guess at the parameter’s true value; the interval estimate is our best guess
at the likely interval (range of values) that contains the parameter’s true value. When we construct
the interval estimate (called a confidence interval) for a parameter, we like to treat the interval as a
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probability statement for the parameter—a set of likely values. But in truth, if the parameter is fixed,
then it is either in the interval we've constructed or it's not. There's no probability associated with it.
The probability instead derives from the sampling distribution. For example, we call it a 95%
confidence interval because we're guaranteed that 95% of the intervals we might have constructed if
we had obtained all possible samples from the population do in fact contain the true parameter
value. All we can do is hope that this is one of the lucky ones. The bottom line is that when the
parameter is treated as real and fixed, then it's only our methods that can have probability associated
with them.

As far as the existence of a true value of the parameter in nature, Bayesians are of an open mind.
The parameter may or may not be real, but in the Bayesian perspective it doesn't matter. All we
know about the parameter is what we believe about it. As knowledge accumulates, our beliefs about
the parameter become more focused. Since the value of the parameter is a matter of belief, and
probability is a matter of belief, for all intents and purposes the parameter can be viewed as a
random quantity. Consequently, to a Bayesian, parameters are random variables, not fixed constants.
As a result, confidence intervals pose no philosophical dilemma for a Bayesian. Since parameters are
random, we can make probability statements about their values. Thus, a confidence interval for a
parameter is a probability statement about the likely values of the parameter. To avoid confusion
with frequentist confidence intervals, Bayesians often call their intervals "credibility intervals". 
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2. Reliance on hypothetical repeated sampling.–For the frequentist, everything hinges on the notion of
repeated sampling to generate the sampling distribution of the statistic. Here, the definition of
probability depends on a series of hypothetical repeated experiments that are often impossible in any
practical sense. Importantly, in the frequentist framework, we assume that the specified model is true
and that the data represent a random outcome. We try to estimate the parameters of the model that
if true would give rise to our observed data as the most frequently occurring outcome. For example,
to say that the probability of heads is one half when a fair coin is tossed once means that if we were
to flip a fair coin repeatedly the long run relative frequency of heads is one half. But since we only
observe our data once (typically), we have to estimate the parameters that would have given rise to
our data more frequently than any other set of observations if we had been able to repeatedly
resample the population. Because we can almost never actually do this in the real world, Bayesians
find this framework silly.

For the Bayesian, there is no reliance on hypothetical repeated sampling. The probabilistic
interpretation of parameters instead stems from the fact that parameters are treated as random
variables, not fixed constants, which allows us to make probability statements about their values
directly. However, the catch is that to do this we have to specify prior probability distributions for
each parameter – our prior belief in the value of each parameter. Given the data in hand and these
prior distributions, we can derive parameter estimates that are the most probable values – without
hypothetical repeated sampling. Frequentists object to the use of priors.
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3. Role of priors - subjective versus objective approaches.--A Bayesian takes pride in the fact that the Bayesian
method of estimation, which finds the most probable parameters given the data at hand and prior
knowledge, essentially encapsulates inductive science in a single formula. In science we develop
theories about nature. Observation and experiment then cause us to modify those theories about
nature. Further data collection causes further modification. Thus, science is a constant dynamic
between prior and posterior probabilities, with prior probabilities becoming modified into posterior
probabilities through experimentation at which point they become the prior probabilities of future
experiments. Thus, the Bayesian perspective accounts for the cumulative nature of science. 

The frequentist retort is that this is a mischaracterization of science. Science is inherently objective
and has no use for subjective quantities such as prior probabilities. Science should be based on data
alone and not the prejudices of the researcher.

The Bayesian rejoinder is first that science does have a subjective component. The "opinions" of
scientists dictate the kinds of research questions they pursue. In any case, if there is concern that a
prior probability unfairly skews the results, the analysis can be rerun with other priors or with
uninformative priors that do not skew the results in any direction. In fact, in Bayesian analysis it is
fairly typical to carry out analyses with a range of priors to demonstrate that results are robust to the
choice of prior. In any event, with large sample sizes, say >30, the priors may have little influence on
the result anyways. 

In fact both schools of thought are correct here. While Bayesians may have described the ideal
scientific method, in truth consensus in science is informal at best. Perhaps there should be a current
prior probability in vogue for everything in science, but typically there isn't. Without this consensus
the inherent subjectivity of priors does seem to be a problem, at least in some cases.
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To Bayes or Not to Bayes? This is the question most often asked today.  Unfortunately, there is no
simple answer since it depends on so many things. Clearly, the current momentum in ecology is
towards the Bayesian framework, but is this because it is fashionable or because it is inherently
superior – this remains to be seen. The pragmatic modeler will become familiar with both
frameworks, learn the advantages and disadvantages of each and seek to understand the conditions
under which the two frameworks give the same or very similar answers – in which case it doesn’t
matter – and when they differ and why.
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