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1. What is a probability (stochastic) distribution?

Recall that the deterministic part of the statistical model describes the expected pattern in the
absence of any kind of randomness or measurement error. The noise or error about the expected
pattern is the stochastic component of the model. To formally estimate the parameters of the model,
you need to know not just the expected pattern (the deterministic component) but also something
about the variation about the expected pattern (the stochastic component). Typically, you describe
the stochastic model by specifying a reasonable probability distribution for the variation about the
expected pattern (see below).



Probability distributions         3

1.1 So u rc e s  o f  e rro r

The variation about the expected pattern, i.e., the stochastic component of the model, is often
termed “noise”. Noise appears in environmental data in two different ways – as measurement error
(sometimes called observation error) and as process noise – and it can be exacerbated by model
error. 

Briefly, measurement error is the variability or “noise” in our measurements having nothing to do with
the environmental system per se, only in our ability to accurately measure the system. Measurement
error makes it hard to estimate parameters and make inferences about environmental systems; more
specifically, it leads to large confidence intervals and low statistical power. 



Probability distributions         4

Even if we can eliminate measurement error (or make it trivially small), process noise or process error
(often so-called even though it isn’t technically an error but a real part of the system) still exists
because variability affects all environmental systems. For example, as Bolker (2008) describes, we
can observe thousands of individuals to determine the average mortality rate with great accuracy.
The fate of a group of individuals, however, depends both on the variability in mortality rates of
individuals and on the demographic stochasticity that determines whether a particular individual
lives or dies. So even though we know the average mortality rate perfectly, our predictions are still
uncertain. Additionally, environmental stochasticity – spatial and temporal variability in e.g.
mortality rate caused by variation in the environment rather than by the inherent randomness of
individual fates – also affects the dynamics, introducing additional variability.
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Lastly, measurement and process error cooccur with what I will refer to as model error, which is the
error in the modeled relationship introduced by the choice of a poorly specified or incorrect
statistical model. Note, this may be due to the investigator choosing the wrong deterministic
function, which exacerbates the apparent error and decreases the signal-to-noise ratio, or choosing
the wrong stochastic model (i.e., probability distribution) such that the error is larger than it should
or need be. In either case, if the model is improperly specified to reflect the process under
investigation, then the signal-to-noise ratio will likely decrease. Even though model error is
fundamentally different than error in the process under investigation or its measurement, it
nonetheless represents an importance source of uncertainty in the model results. If the model is
poorly or incorrectly specified, then there is likely to be much more uncertainty in the model results.
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1.2 Co n v e n tio n al v e rs u s  h ie rarc h ic al m o d e ls

The distinction between measurement (or observation) and process error can be very important, and
separating these two sources of error is the basis for one whole class of multi-level or hierarchical
models (which we will discuss further in a later section). The example shown here was taken from
Royle and Dorazio (2008) and was derived from the Swiss Survey of Common Breeding Birds. The
data represent the presence/absence of the Willow Tit on 237 1 km  quadrats in relation to two2

covariates that affect the species’ distribution: forest cover and elevation. A conventional (i.e.,
nonhierarchical) logistic regression model was fit to the data in which the errors associated with the
species occurrence on a plot (i.e., process error) and the error associated with detecting the species
given it is present (i.e., measurement error) are confounded. A hierarchical model was also fit to the
data in which the two sources of error are modeled separately. The figures shown here depict the
fitted response in occurrence probability for the willow tit to forest cover and elevation. The solid
line and dotted lines show the fitted responses for the conventional and hierarchical models,
respectively. Even though the general relationships are the same between models, the response to
both covariates is significantly stronger in the hierarchical model. In extreme cases, failure to
separately account for both observation and process error can lead to erroneous conclusions.
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1.3 Pro b ab ility  d is trib u tio n s

Formally, a probability distribution is the set of probabilities on a sample space or set of outcomes; it
describes the set of probabilities for all possible outcomes of a random variable. Here, we will always
be working with sample spaces that are numbers – the number or amount observed in some
measurement of an environmental system. Importantly, the probability distribution deals with the
type (scale) of the dependent variable, not the independent variable(s). In the context of a statistical
model, it is perhaps easiest to think about a probability distribution as a description of the stochastic
component of the model, representing the random variability about the expected value (typically the
mean). In the simple linear regression example shown here, where the expected value of brown
creeper abundance is a linear function of the extent of late-successional forest, the observed values
of brown creeper abundance deviate from the expected (fitted) values in every case. These
differences are the “errors” in the model (these errors are also called “residuals” as they represent
the residual variability not accounted for by the deterministic model). The probability distribution
describes the distribution of these errors, and is shown here as a histogram. Note, to fit this model
using parametric methods, we had to assume that these errors were drawn from a specific
distribution (the normal distribution in this case) having one or more parameters that control its
shape, location and/or scale. The histogram reveals that this was a reasonable assumption in this
case. Note that the assumption of a particular probability distribution is the basis for all so-called
parametric statistical methods. Lastly, it can be useful to think of the probability distribution as a sort
of data-generating mechanism; an engine that randomly generates the data points that we ultimately
observe in our sample. This random data generating mechanism is necessary to simulate data, which
we will discuss in a later section.
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2. Discrete distributions

The simplest distributions to understand are discrete distributions whose outcomes are a set of
integers; most of the discrete distributions we deal with describe counting or sampling processes and
have ranges that include some or all of the nonnegative integers. Note, discrete data generally arise
from counting indivisible units. For example, a count of the number of individuals on a plot is
discrete since individuals are indivisible – at least if they want to remain an individual. However,
counting the basal area of trees on a plot (e.g., m /ha) but recording it to the nearest integer value2

doesn’t mean that basal area is discrete, only that your measurement precision is to the nearest
integer. Recording a continuous variable on a discrete scale doesn’t make the variable truly discrete,
even if it allows you treat the data as if it were discrete – and thus use a discrete probability
distribution. However, there are occasional cases when it may make sense or even be necessary to
make your continuous data discrete for the analysis or, conversely, treat count data is if it were
continuous, but in general it is probably best to remain faithful to the intrinsic scale of the variable.
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As an example, one of the most common discrete distributions in environmental science and the
easiest to understand is the binomial. It applies when you have samples (observational units) with a
fixed number of subsamples or “trials” in each one, and each trial can have one of two values (e.g.,
present/absent, alive/dead), and the probability of “success” (present, alive) is the same in every
trial. Consider the presence/absence of a focal species across 10 plots (subsamples) within a sample
(observational) unit, say a watershed. At each plot, the species is either “present” or “absent”, which
we usually represent as a 1 and a 0, respectively. If we survey all 10 plots (trial size=10) within each
sample and the probability of the species being present is prob=0.3, then the probability of observing
the species present at say 4 plots (k=4) within a sample will have a binomial distribution with
parameters size=10 and prob=0.3. What type of data does this example represent? 

Hopefully you answered proportional, since each sample (observational) unit has a fixed number of
trials, each of which can take on a binary response, such that the number of successes can be
expressed as a proportional of the total number of trials (e.g., 3 out 10). What if each sample unit
had only a single trial (i.e., size=1). What kind of data would this be? Hopefully you answered binary,
since each sample unit can take on only one of two values (e.g., present or absent, success or failure).
The key here is to note that binary data is just the special case of proportional data when the trial
size equals 1. As a result, the binomial distribution is appropriate for both data types.
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The easiest way to think about this is as follows. For a single sample consisting of 10 plots, we will
observe the species to be present a certain number of times, right? The range of possibilities is 0-10,
since there are 10 plots – this constitutes the full set of possible outcomes. If the probability of the
species being present on any single plot is prob=0.3, then on average we should expect to observe
the species on 3/10 plots. However, given random variability in the environmental system (and the
error in our ability to accurately detect the species), it is quite possible that for any given random
sample of 10 plots, we might easily observe the species present on say only 1 or 2 plots or perhaps 4
or 5 plots, but it seems highly unlikely that we would observe the species present on all 10 plots.
Numerically, we can figure out the likelihood of the species being present 0, 1, ... 10 times by
drawing repeated samples, each time recording the number of presences across the 10 plots (k).
After we draw a large number of samples, we can plot the distribution of k. 
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The frequency of samples with any particular value of k can be converted into a probability simply
by dividing it by the total number of samples in the distribution (or the cumulative area of the
frequency distribution). If we plot the result, we have the empirical probability distribution (given a
special name below) which depicts the probability of observing any particular value of k. Of course,
the empirical probability distribution shown here is specific to this data set; it gives the actual
probability that we observed each value of k (# successes) in this dataset. However, we typically
want to know the theoretical probability distribution; the probability of observing each value of k
from an infinitely large sample, under the assumption that our sample was drawn from such a
distribution. Of course we don’t have to actual collect hundreds or thousands of samples in order to
calculate the approximate theoretical probability distribution, since the mathematical properties of
the binomial distribution (and many others, see below) are known.
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2.1 Pro b ab ility  m as s  fu n c tio n

For a discrete distribution, the probability distribution (often referred to as the probability mass function
or pmf for short) represents the probability that the outcome of an experiment or observation (called
a random variable) X is equal to a particular value x (f(x)=Prob(X=x)). In the case of the binomial
distribution, for example, we can calculate the probability of any specified number of successes (x=k)
given the number of trials (size or N) and the probability of success (prob or just p) for each trial. In
the example shown here, the probability of the species being present at 4 of the 10 plots given a per
trial probability of success prob=0.3 is 0.2.
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2.2 Cum u lativ e  p ro b ab ility  d is trib u tio n

The cumulative probability distribution represents the probability that a random variable X is less
than or equal to a particular value of x (f(x)=Prob(X#x)). Cumulative distribution functions are
most useful for frequentist calculations of so-called tail probabilities, or p-values. In the case of the
binomial distribution, for example, we can calculate the probability of the species being present k or
fewer times given the number of trials (size) and the probability of success (prob) for each trial. In the
example shown here, the probability of the species being present at 4 or fewer plots out of 10 given
a per trial probability of success prob=0.3 is 0.85. Thus, if we were to repeatedly draw samples of 10
(trials) given a per trial probability of success prob=0.3, then we would expect to observe the species
present on 4 or fewer plots 85% of the time. Conversely, then, we would expect to observe the
species present on 5 or more plots 15% of the time. Thus, the probability of observing the species
present on 5 or more plots if the sample was drawn from a binomial distribution with size=10 and
prob=0.3 would be 0.15, or p=015. We refer to this as the “tail” probability because it represents the
probability of being in the tail of the probability distribution; the probability of being 5 or greater in
this case. We also call this the p-value, which is the standard basis for hypothesis testing, which we
will return to later.
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2.3 Quan tile  d is trib u tio n

The quantile distribution represents the value of x for any given quantile (proportion) of the
cumulative probability distribution; i.e., it is the opposite of the cumulative probability distribution.
In the case of the binomial distribution, for example, we can calculate the number of times the
species is expected to be present k or fewer times for any specified probability level given the
number of trials (size) and the per trial probability of success (p). In the example shown here, the
species is expected to present on 5 or fewer plots out of 10 in 90 out of every 100 samples given a
per trial probability of success prob=0.3.
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2.4 Rand o m  num b e rs

Random numbers can be drawn from a specified probability distribution. For example, in the
binomial example shown here, we can draw a random sample from the specified binomial
distribution (i.e., given trial size and per trial probability of success). The result is the number of
successes (or species’ presences, in this case) in a single sample of size=10 given a per trial
probability of success prob=0.3. Note, if we repeat this process, we would expect to observe a
different result each time owing to chance. Indeed, it is this variability that gives rise to the
probability distribution.
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2.5 B in o m ial e xam p le s

There are lots of examples of data well suited to the binomial distribution:

• # adult female salamanders that successfully breed in a pond (observational unit). In this
example, the pond is the sample (observational) unit, the # females attempting to breed is the
trial size, and the # successful females is the outcome of the set of trials (breeding attempts).
The proportion of breeding females that are successful is distributed binomially. Note, in this
case, if multiple ponds are sampled, the trial size is likely to vary among ponds – this is OK with
proportional data.

• # point intercepts along a transect or grid that intersect a focal plant species out of a total # of
point intercepts taken on a vegetation plot. In this example, the vegetation plot is the sample
(observational) unit, the # of point intercepts taken is the trial size, and the # of point intercepts
intersecting the focal plant species is the outcome of the set of trials (point intercepts). The
proportional cover of the focal plant species is distributed binomially. Note, in this case, in
multiple vegetation plots are sampled, the trial size is likely to be fixed by study design.

• Can you think of other examples of either proportional data or binary data where the trial size is
1?
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3. Continuous probability distributions

A probability distribution over a continuous range (such as all real numbers, or the nonnegative real
numbers) is called a continuous distribution. 

As an example, the most common continuous distribution in ecology (and all of statistics) and the
easiest to understand is the normal. 
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The normal distribution
applies when you have
samples that can take on
any real number and for
which there is a central
tendency (usually described
by the mean). Consider the
size of fish in a particular
stream. Each fish has a size
that can take on any
nonnegative real number
(>0). If the size distribution
of fish in the population is
symmetric about the mean
(ì) with a standard
deviation (sd) or spread
about the mean equal to ó,
then the probability of
observing a fish of size y will have a normal distribution with parameters ì and ó. 
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Continuous probability distributions are a bit more confusing to understand than discrete
distributions. Let’s consider the fish size example further. The frequency of fish of any particular
size (i.e., the frequency distribution, as shown) can’t be converted into a probability simply by
dividing it by the total number of samples in the distribution (or the cumulative area of the
frequency distribution) as we did with the discrete distribution. This is because, unlike the discrete
distribution, we can’t enumerate all possible outcomes of the continuous random variable because it
can take on any real number – at least theoretically. In the fish size example, you may imagine that a
measurement of size is exactly 7.9 cm, but in fact what you have observed is that the size is between
7.85 and 7.95 cm – if your scale has a precision of ±0.1 cm. Thus, continuous probability
distributions are expressed as probability densities rather than probabilities – the probability that
random variable X is between x and x+ªx, divided by ªx (Prob(7.85 < X < 7.95)/0.1, in this case).
Dividing by ªx allows the observed probability density to have a well-defined limit as precision
increases and ªx shrinks to zero. Unlike probabilities, probability densities can be larger than 1. In
practice, we are concerned mostly with relative probabilities or likelihoods, and so the maximum
density values and whether they are greater than or less than 1 don’t matter much.
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3.1 Pro b ab ility  d e n s ity  fu n c tio n

For a continuous distribution, the probability distribution is referred to as a probability density function
(or pdf for short). In the case of the normal distribution, for example, we can calculate the probability
density for any specified value of X given the mean (ì) and standard deviation (ó). In the example
shown here, the probability density for an individual with size = 8 cm given an underlying mean of
say 10 cm and a standard deviation of say 2 cm is 0.12.
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3.2 Cum u lativ e  p ro b ab ility  d is trib u tio n

The cumulative probability distribution represents the probability that a random variable X is less
than or equal to a particular value of x (f(x) = Prob(X#x)). Remember, cumulative distribution
functions are most useful for frequentist calculations of tail probabilities. In the case of the normal
distribution, for example, we can calculate the probability of a fish being smaller than or equal to any
given size given the mean fish size (ì) and the standard deviation (ó). In the example shown here, the
probability of a fish less than or equal to 8 cm given an underlying mean of 10 cm and sd of 2 cm is
0.16.
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3.3 Quan tile  d is trib u tio n

The quantile distribution represents the value of x for any given quantile (proportion) of the
cumulative probability distribution; i.e., it is the opposite of the cumulative probability distribution.
In the case of the normal distribution, for example, we can calculate the upper size limit below
which any specified percentage of the distribution lies given the mean fish size (ì) and the standard
deviation (ó). In the example shown here, fish are expected to be smaller than 12.56 cm 90 percent
of the time given an underlying mean of 10 cm and sd of 2 cm. 
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3.4 Rand o m  num b e rs

Random numbers can be drawn from a specified probability distribution. For example, in the
normal distribution example shown here, we can draw a random sample from the specified normal
distribution (i.e., given the mean and sd). The result is the size (in this case) of a single fish drawn at
random from a normal distribution with mean of 10 cm and sd of 2 cm. Note, if we repeat this
process, we would expect to observe a different result each time owing to chance. Indeed, it is this
variability that gives rise to the probability distribution.
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3.5 No rm al (Gau s s ian ) e xam p le s

There are lots of examples of data well suited to the normal distribution:

• Home range size (ha) of individuals in a population. The individual is the sample (observational)
unit and home range size is the measured continuous response that is likely to roughly
symmetrically distributed about a central mean value.

• Basal area (m /ha) of white pine stands. The forest stand is the sample (observational) unit and2

basal area is the measured continuous response that is likely to be roughly symmetrically
distributed about a central mean value.

• Temperature (degrees Celsius) on December 21  over the past 100 years. The year or day ofst

December 21 is the sample (observational) unit and temperature is the measured continuous
response that is likely to roughly symmetrically distributed about a central mean value.

• Can you think of other examples of continuous data where the normal distribution makes sense?
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4. Bestiary of probability distributions

There are a large number of well-established probability distributions. Some of these, like the
binomial and normal distributions discussed above, are already quite familiar to ecologists. Indeed,
the normal distribution should be familiar to everyone as it is the distribution underlying most of the
classical statistical methods that we learned in introductory statistics courses. However, it is very
important to understand that there are many other probability distributions for both discrete and
continuous data that have widespread application to environmental data. Indeed, some of these
distributions address the shortcomings or limitations of the normal distribution for environmental
data. Of course, a detailed description of all of the available distributions is way beyond the scope of
this course. Instead, here we will briefly review a small bestiary of distributions that are useful in
environmental modeling (summarized from from Bolker 2008 and Crawley 2007, but do see these
references for a more complete description).
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4.1 Dis c re te  d is trib u tio n s

4.1.1 Binomial

The binomial distribution gives the number of success (k) in a sample with a fixed number of trials
(size) and an equal probability of success (prob) in every trial. In each trial, there are only two possible
outcomes (success or failure, presence or absence, etc.). Thus, the response in a given trial is binary
and can be represented as a 0,1 response. The binomial is used when k has an upper limit; that is,
when the trial size is known and places a limit on the number of possible successes. When the trial
size is effectively unlimited, the Poisson distribution is more appropriate. In addition, when the
sample size (number of trials) gets large and the probability of success per trial (prob) is small, the
binomial distribution approaches the Poisson (below). There are numerous uses of the binomial in
ecology.
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4.1.2 Poisson

The Poisson distribution gives the number of events in a given unit (space or time) of sampling
effort if each event is independent. The Poisson is used when you expect the number of events to
be effectively unlimited; if the number of events is limited, use the binomial distribution. The
Poisson is used only for count data; that is, events that can’t be meaningful divided into smaller units
simply be changing the scale of the measurement (e.g., changing meters to centimeters). The Poisson
is very common and familiar to ecologists because count data is so common to population and
community ecology.
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4.1.3 Negative binomial

The negative binomial distribution gives the number of failures before a predetermined number of
success (n) occurs in a sample with an equal probability of success (prob) in every trial. While the
negative binomial has a mechanistic use in ecology, it is more often used phenomenologically to
describe a patchy or clustered distribution with no intrinsic upper limit that has more variance than
the Poisson; i.e., an overdispersed Poisson distribution in which the variance is greater than the
mean. In this case, the negative binomial can be parameterized with two parameters, mu and k,
where mu is the expected number of counts and k is the overdispersion parameter. The
overdispersion parameter measures the amount of clustering, or aggregation, or heterogeneity in the
data: a smaller k means more heterogeneity. The negative binomial can be hard to tell from the
Poisson when the heterogeneity is low. The negative binomial can arise from a Poisson sampling
process where the rate (lambda, ë) itself varies according a Gamma distribution (below). In this case,
the negative binomial reflects unmeasured (“random”) variability in the population. Negative
binomial distributions can also result from a homogeneous birth-death process, making it difficult to
reason backwards from the observed probability distribution to the particular mechanisms that
generated it. Nevertheless, the negative binomial is very useful in ecology and is most often used in
the same situations as the Poisson, but allowing for heterogeneity in the data.
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4.1.4 Geometric

The geometric distribution has two closely related forms. One form gives the number of trials based
on the set {1, 2, ...} until you get a single success in a sample with equal probability of success (prob)
in every trial. The alternative forms gives the number of failures based on the set {0, 1, 2, ...} until
you get a single success in a sample with an equal probability of success (prob) in every trial. Note the
subtle differences between formulations. The probability mass distribution, along with the mean and
variance, are slightly different between forms. Note, the geometric is also a special case of the
negative binomial, with k =1. The geometric distribution is often used to describe survival time data,
e.g., the number of successful/survived breeding seasons (i.e., interpreted as failures) for a seasonally
reproducing organism until it dies (i.e., interpreted as success), when time is considered as discrete
units (e.g., years). Alternatively, and more directly, it can be used to describe for example the number
of failed nesting attempts until the first success.
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4.2 Co n tin u o u s  d is trib u tio n s

4.2.1 Normal

The normal distribution is used everywhere and is the basis for most classical statistical methods. It
arises from the sum of many independent samples drawn from the same distribution (of any shape)
and its ubiquity stems from the Central Limit Theorem, which says that if you add a large number of
independent samples from the same distribution, the distribution of the sum will be approximately
normal. The normal distribution has two parameters, the mean and standard deviation, which are
independent. Consequently, one often assumes constant variance (as the mean changes), in contrast
to the Poisson and binomial distributions where the variance is a fixed function of the mean. The
normal distribution is used with continuous, unimodal and symmetric distributions, which are
reasonably common in ecology (e.g., temperature, pH, nutrient concentration).
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4.2.2 Gamma

The Gamma distribution gives the distribution of waiting times until a certain number of events
(shape) takes place, for example, the distribution of the length of time (in days) you would expect to
have to wait for 3 deaths in a population, given an average survival time. The Gamma distribution is
the continuous counterpart of the negative binomial, which recall is used to described an
overdispersed Poisson with heterogeneous data. The Gamma is similarly used in phenomenological
fashion with continuous, positive data having too much variance and a right skew; in other words,
an overdispersed normal distribution with a right skew. The Gamma is an excellent choice when
only positive real numbers are possible (note the normal is not lower bounded like Gamma).
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4.2.3 Exponential

The exponential distribution gives the distribution of waiting times for a single event to happen
given a constant probability per unit time (rate) that it will happen. The exponential is the continuous
counterpart of the geometric and is a special case of the Gamma with shape = 1. The exponential is
used mechanistically when the distribution arises via waiting times, but it is also frequently used
phenomenologically for any continuous distribution that has highest probability for zero or small
values.
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4.2.4 Beta

The beta distribution is closely related to the binomial; it gives the distribution of the probability of
success in a binomial trial with a-1 observed successes and b-1 observed failures. It is the only
continuous probability distribution, besides the uniform, with a finite range, from 0 to 1. This makes
it very useful when you have to define any continuous distribution on a finite range. The beta
distribution is used with data in the form of probabilities or proportions (e.g., proportional cover).
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4.2.5 Lognormal

The lognormal gives the distribution of the product of independent variables with the same
distribution, much like the normal except it stems from the product instead of a sum. The best
example of this mechanism is the distribution of the sizes of individuals or populations that grow
exponentially, with a per capita growth rate that varies randomly over time. At each time step (e.g.,
daily, yearly), the current size is multiplied by the randomly chosen growth increment, so the final size
(when measured) is the product of the initial size and all of the random growth increments. The
easiest way of thinking about the lognormal is that taking the log of a lognormal variable converts it
to a normal variable. The lognormal is often used phenomenologically in situations when the
Gamma also fits.
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4.2.6 Chi-square

The chi-square distribution gives the sum of squares of n (degrees of freedom) normals each with
variance one. The chi-square distribution is famous for its use in contingency table analysis (cross-
classified categorical data) and the analysis of count data. For example, in a table of cross-classified
counts (males versus females and present versus absent), the Pearson’s chi-squared statistic is equal
to the sum of the squared deviations between observed counts and expected counts divided by
expected counts, where expected counts are typically under the null hypothesis of independence
among factors (sex and presence in this case). The chi-square is also especially important to us
because Likelihood ratio statistics (which we will discuss in a later chapter), which are used to test
for the difference between nested models, are also approximately distributed chi-squared. 
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4.2.7 Fisher’s F

Fisher’s F distribution gives the ratio of the mean squares (variances) of two independent standard
normals, and hence of the ratio of two independent chi-squared variates each divided by its degrees
of freedom. The F distribution is famous for its use in analysis of variance (ANOVA) tables,
involving the ratio of treatment (or model) and error variance. Note, the F distribution is used in
both classical ANOVA as well as linear regression.
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4.2.8 Student’s t

The Student’s t distribution represents the probability distribution of a random variable that is the
ratio of the difference between a sample statistic and its population value to the standard deviation
of the distribution of the sample statistic (known as the standard error of the estimate). It is also the
overdispersed counterpart for the normal distribution which results from mixing the normal
sampling distribution with an inverse gamma distribution for the variance. The t distribution has
fatter tails than the normal and is famous for its use in testing the difference in the means of two
normally distributed samples. It is commonly used in testing whether a parameter estimate differs
from zero. The t distribution is also proportional to the F distribution (F=t ) when there is a single2

degree freedom in the numerator.
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5. Choosing the right probability distribution?

Determining the appropriate probability distribution can be just as challenging as choosing the right
deterministic function, although in some cases it may require little thought. In the modeling process,
the choice of a stochastic model is especially critical because it is the basis for most of the
assumptions of parametric
statistical methods. In
particular, the errors are
assumed to follow a
specified distribution. If
they do not, then the
statistical inferences, such as
any hypothesis tests, are
strictly invalid. Fortunately,
in many cases, the methods
are surprising robust to
minor or even modest
infractions of this
assumption, but the further
your data stray away from
the assumptions of the
model, the weaker the
inferences will be and the
greater the chances you
have of reaching erroneous conclusions. Thus, choosing a stochastic model carefully is of
paramount concern. In many cases, the model choice is made a priori or is intrinsic to the study
design. For example, a sample of a fixed number of plots to determine species presence/absence
will have a binomial distribution by design. However, there will be many times where an initial
examination of the data will
provide important insights
on the adequacy of a
particular model and suggest
a different model or perhaps
competing models. Time
spent carefully considering
the right model for the
question, given the data, is
time well worth spending, as
any inferences made are
going to be contingent on
the model, as are any insights
that are gained from the
study.
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6. Statistical Models – putting it all together

Let’s go back to our three initial real-world examples introduced in the previous section on
deterministic functions and now consider the full statistical model, comprised of both the
deterministic component and the stochastic component, for each example.

Example 1: Linear model (brown creeper abundance)

In this example, recall that the dependent variable Y (brown creeper abundance) is hypothesized to
be linearly dependent on the independent variable X (extent of late-successional forest). Before
exploring this linear relationship, however, let’s begin with an even simpler model of the distribution
of brown creeper abundance without relationship to any independent variable. 

The raw empirical distribution is given by the histogram or, more appropriately (since it is a
continuous variable), by the smoothed kernel density line shown in the figure. We can fit a
parametric statistical model by assuming a particular probability distribution. Let’s begin with the
normal distribution. This simple statistical model contains no deterministic component – it is
entirely error; actually, it does contain a deterministic component but it is just a constant, the mean.
We can specify this model as follows:
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Read this as “Y is a random variable distributed (represented by tilda) normally with a mean equal to
mu and a standard deviation sd equal to sigma.” If we estimate the mean from the sample mean (0.39)
and the standard deviation from sample standard deviation (0.22), the normal distribution matches
the empirical distribution pretty well as shown in the figure, so the normal probability distribution
might be a reasonable choice for this dataset. However, since the normal distribution allows for
negative values and our random variable (brown creeper abundance) cannot be negative, we might
also try the Gamma distribution which allows only positive values. We can specify the gamma model
as follows:

Note, in this model there are two parameters, shape and scale. Unfortunately, neither of these
parameters are equal to the mean. The mean of the Gamma is equal to the product of shape and
scale. Consequently, we can reparameterize the Gamma as shown, with scale equal to the mean
divided by shape. If we were to estimate shape equal to 1.61 and scale equal to 0.24 (mean of Y
divided by 1.61), the Gamma distribution is positively skewed and does not appear to match the
empirical distribution as well as the normal.

If we were only interested in describing the distribution of brown creeper abundance, we would be
done with our statistical modeling. However, we are usually interested in trying to explain variation
in the dependent variable by one or more independent variables. This is where the deterministic
model comes into play. We use a deterministic function to model how the expected value of the
dependent variable (the mean) varies as some function of the variation in one or more independent
variables. In this example, we want to know if the expected value of brown creeper abundance
increases linearly with increasing extent of late-successional forest.
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In this example, we might hypothesize that the dependent variable Y, brown creeper abundance, is
linearly dependent on the independent variable X, extent of late-successional forest, with normally
distributed (and independent) errors. The conventional specification of this model is as follows:

An appealing feature of this model specification is that it makes explicit the distinction between the
deterministic and stochastic components of the model. An alternative and more succinct
specification of this model is as follows:

An appealing feature of this model specification is that it makes explicit the link between the
deterministic and stochastic components of the model. This formulation is the one we will use
throughout and is interpreted as follows: Y is distributed (represented by tilda) normally with a mean
equal to a linear function of X and a standard deviation equal to sigma. In this model, there are three
parameters (to be estimated): a and b are the intercept and slope of the linear model and are thus
associated with the deterministic component of the model, and sigma is the standard deviation of the
normal probability distribution and is thus associated with the stochastic component of the model. 
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Alternatively, we might specify the model with a Gamma error distribution as follows:
It is important to recognize the link between the deterministic model and the stochastic model. In
most cases (including all that we have discussed thus far), the deterministic model is used to
represent how the independent variable(s) relates to the expected value (mean) of the dependent

variable. Thus, the link is via the mean of the probability distribution. Recall that the normal
probability distribution has two parameters: the mean and the standard deviation. If all we are
interested in is explaining the distribution of the dependent variable without relation to any
independent variable, then we would not have a deterministic model (but in truth, it would simply
be a constant, the meam) and the entire model would be comprised of the stochastic component
alone. In this case, we would have two parameters, the mean and standard deviation. However, if we
are interested is explaining the dependent variable in relation to one or more independent variables,
which we usually are, then we also need a deterministic model. Instead of simply modeling the mean
as a single parameter, we replace the mean parameter with our deterministic function (the linear
model in this case), which we use in order to specify the mean as a function of an independent
variable. Because the normal distribution has a parameter that is equal to the mean, the link between
the deterministic function and the stochastic distribution is straightforward. Unfortunately, this is
not always the case. In the Gamma model, the mean is the product of shape and scale, so we have to
work the mean in a little differently. In the case shown here, we specified the scale parameter to be
equal to the mean divided by shape. For all practical purposes, this parameterization is no real
concern. We are still modeling the mean as a linear function of the independent variable and the
errors are distributed Gamma about that mean.
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Let’s take a graphical look at how the deterministic and stochastic components of the model link
together. The deterministic linear model (once the slope and intercept parameters have been
estimated) tells us the expected value (mean) of brown creeper abundance. For example, if extent of
late-successional forest is approximately 20%, then we expect or predict brown creeper abundance
to be 0.2. If our data is being generated from a normal distribution, then we expect the observed
values of brown creeper abundance to vary normally about a mean of 0.2 with a standard deviation
(spread) estimated from the data to be 0.14. Thus, for any observed value of brown creeper
abundance in a landscape with roughly 20% late-successional forest, we can use the probability
density function to determine the probability of observing that value. Values close to the mean will
have a relatively high probability and values far from the mean will have a relatively low probability.
Similarly, if our data is being generated from a Gamma distribution, then we expect the probability
density function to be different. In this case, we estimated the shape to be equal to 3.47 and thus the
scale to be equal to 0.2/3.47. The resulting probability distribution gives the probability of observing
any particular value of brown creeper abundance if the data came from a Gamma distribution. Note,
the Gamma distribution is considerably flatter (i.e., more spread) than the normal and is positively
skewed, which might be quite reasonable for this data. We can repeat this process for any value of
the independent variable. For example, if extent of late-successional forest is roughly 80%, then we
expect brown creeper abundance to be 0.6, and the probability of observing any particular value to
be given by the corresponding probability distributions.
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Although the probability distribution is determined by the type (and scale) of the dependent
variable, and that should be the paramount consideration in choosing a probability distribution, the
formal statistical assumption of the final model is that the residuals (or errors) are (typically)
independently and identically distributed according to the specified probability distribution. Thus,
the customary way to evaluate the adequacy of a statistical model and whether the statistical
assumptions have been met is to analyze the residuals of the model. One way to do this is simply to
plot the residuals and verify that the shape of the distribution is consistent with the chosen
probability distribution.

In the figures shown here, the left plot shows the distribution of the residuals from the model fit
with the Normal errors, and I have overlaid a normal curve with a mean of zero (the expected value
for the residuals in this case) and a standard deviation estimated from the model fitting process (to
be discussed later). In this case it seems that the residuals plausibly come from a Normal
distribution, although the residual distribution seems to be slightly right-skewed when a Normal
distribution should be perfectly symmetrical. The right plot shows the distribution of the residuals
from the model fit with Gamma errors, and I have overlaid a Gamma curve (fit by the model) after
shifting the residuals to have a minimum value of zero. In this case, since the Gamma can take on
right skew, the distribution seems to correspond better to the observed residuals and we might thus
conclude that the Gamma is the more appropriate distribution to use in this case.
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Example 2: logistic model (brown creeper presence/absence)

In this example, recall that the dependent variable Y (brown creeper presence) is hypothesized to be
logistically dependent on the independent variable X (total basal area). Before exploring this
relationship, however, let’s begin with a simpler model of the distribution of brown creeper presence
without relationship to any independent variable. 

The raw empirical distribution is given by the barplot shown here. We can fit a parametric statistical
model by assuming a particular probability distribution. Let’s assume the binomial distribution,
which is perfectly suited for binary response data. This simple statistical model contains no
deterministic component – it is entirely error (but in truth, it is simply a constant, the mean). We can

specify this model as follows:

Read this as “Y is a random variable distributed binomially with a trail size equal to 1 and a per trial
probability of success prob equal to pi.” Note, in this case the trial size if fixed by study design, only
prob is free to vary. If we estimate the probability of presence to be equal to the proportion of
presences in our data set (0.32), the binomial distribution matches the empirical distribution exactly
– not surprisingly.
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Now let’s expand this model to include the logistic relationship between probability of presence and
total basal area. In this example, the dependent variable Y (probability of brown creeper presence) is
hypothesized to vary as a logistic function of the independent variable X (total basal area) with
binomially distributed (and independent) errors. The fully specified model is as follows:

This model is interpreted as follows: ð is the per trial probability of success (presence, in this case)
and it is a logistic function of X; Y is distributed binomially with a trial size equal to one and a per
trial probability of success equal to ð. In this model, there are only two parameters (to be estimated):
a and b are the location and scale parameters of the logistic function and move the inflection point
left/right (location) and make the sigmoid curve steeper or shallower (scale). Both parameters are
associated with the deterministic component of the model. There are no additional parameters for
the stochastic component of the model, because the binomial distribution has only one free
parameter when the trial size is fixed at one, and it is the per trial probability of success which is
being specified via the deterministic model. 
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As in the previous example, we use the independent variable to predict the mean of the dependent
variable, in this case to determine the expected probability of presence. For example, if total basal
area is roughly 10, then we predict there to be a 0.2 probability of presence. The probability of
observing either outcome, presence or absence, is then given by the binomial probability mass
function for a trial size equal to 1 and a per trial probability of success equal to 0.2. Similarly, for a
total basal area equal to roughly 60, we predict there to be a 0.8 probability of presence, and the
binomial gives the probability of presence versus absence.
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Example 3: Ricker model (striped bass stock-recruitment)

In this example, recall that the dependent variable Y (recruits) is hypothesized presumed to vary as a
Ricker function of the independent variable X (stock) with either normal or Gamma distributed
(and independent) errors. Before exploring this nonlinear relationship, however, let’s begin with an
even simpler model of the distribution of recruits without relationship to any independent variable. 

The raw empirical distribution is given by the histogram or, more appropriately (since it is a
continuous variable), by the smoothed kernel density line shown in the figure. We can fit a
parametric statistical model by assuming a particular probability distribution. Let’s begin with the
normal distribution. This simple statistical model contains no deterministic component – it is
entirely error (but in truth, it is simply a constant, the mean). We can specify this model as follows:

Read this as “Y is a random variable distributed normally with a mean equal to mu and a standard
deviation sd equal to sigma.” If we estimate the mean from the sample mean (9758) and the standard
deviation from sample standard deviation (5213), the normal distribution matches the empirical
distribution reasonably well as shown in the figure, so the normal probability distribution might be a
reasonable choice for this dataset. However, since the normal distribution allows for negative values
and our random variable (recruits) cannot be negative, and the normal distribution is symmetrical
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but our data appear to be positively skewed, we might also try the Gamma distribution which allows
only positive values and allows for positive skew. We can specify the gamma model as follows:
Note, as in the first example, we have parameterize the Gamma as shown, with scale equal to the
mean divided by shape. If we were to estimate shape equal to 1.31 and scale equal to 10000, the
Gamma distribution is positively skewed and also appears to match the empirical distribution
reasonably well.

If we were only interested in describing the distribution of recruits, we would be done with our
statistical modeling. However, in this example, we want to know if the expected value of recruits
varies according to a Ricker function of stock.
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The fully specified model is as follows:

Alternatively, we can specify the model more succinctly as follows:

This model is interpreted as follows: Y (recruits) is a random variable distributed normally with a
mean equal to a Ricker function of X (stock) and standard deviation equal to sigma.

Alternatively, we might specify the model with a Gamma error distribution as follows:

In this case, the model is read as follows: Y (recruits) is a random variable distributed Gamma with a
shape equal to alpha and scale equal to a Ricker function of X (stock) divided by alpha. In this
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model, there are three parameters (to be estimated): a and b are parameters of the Ricker function
and influence the location and shape of the curve and are thus associated with the deterministic
component of the model, and alpha is the shape parameter of the Gamma distribution and is thus
associated with the stochastic component of the model. Note, the mean of the Gamma distribution
is equal to the product of the scale parameter and the shape parameter (see Bolker). Thus, to link the
deterministic model to the stochastic model, we have to redefine the scale parameter to be equal to
the mean (expected value of Y) divided by shape.
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Now let’s take a graphical look at how the deterministic and stochastic components of the model
link together. Once the parameters of the deterministic  model (a and b) have been estimated, it tells
us the expected value (mean) of the dependent variable recruits. For example, if stock is
approximately 1000, then we expect or predict recruits to be roughly 7500. If our data is being
generated from a normal distribution, then we expect the observed values of recruits to vary
normally about a mean of 7500 with a standard deviation (spread) estimated from the data to be
1099. Thus, for any observed value of recruits coming from a stock of roughly 1000, we can use the
probability density function to determine the probability of observing that value. Values close to the
mean will have a relatively high probability and values far from the mean will have a relatively low
probability. Similarly, if our data is being generated from a Gamma distribution, then we expect the
probability density function to be different. In this case, we estimated the shape to be equal to 12.91
and thus the scale to be equal to 7500/12.91. The resulting probability distribution gives the
probability of observing any particular value of recruits if the data came from a Gamma distribution.
Note, the Gamma distribution is considerably flatter (i.e., more spread) than the normal and is
positively skewed, which might be quite reasonable for this data. We can repeat this process for any
value of the independent variable. For example, if stock is roughly 5000, then we expect recruits to
be 1350, and the probability of observing any particular value to be given by the corresponding
probability distributions.
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In the figures shown here, the left plot shows the distribution of the residuals from the model fit
with the Normal errors, and I have overlaid a normal curve with a mean of zero (the expected value
for the residuals in this case) and a standard deviation estimated from the model fitting process (to
be discussed later). In this case it seems that the residuals plausibly come from a Normal
distribution, although the residual distribution seems to be slightly right-skewed when a Normal
distribution should be perfectly symmetrical. The right plot shows the distribution of the residuals
from the model fit with Gamma errors, and I have overlaid a Gamma curve (fit by the model) after
shifting the residuals to have a minimum value of zero. In this case, since the Gamma can take on
right skew, the distribution seems to correspond better to the observed residuals and we might thus
conclude that the Gamma is the more appropriate distribution to use in this case.
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